Skip to main content
×
×
Home

Reservoir Effects in a Stone Age Fjord on Lolland, Denmark

  • Bente Philippsen (a1)
Abstract

On the island of Lolland, southeast Denmark, an area of almost 300 ha is currently under archaeological investigation prior to the planned construction of a tunnel between Denmark and Germany under the Femern belt. The area investigated in the context of the “Femern project” includes a former fjord or lagoon, which was used both as an economic resource and as background for ritual activities in the Neolithic. The wetland conditions give excellent preservation conditions for organic material. A yet unsolved issue, however, is the question of reservoir effects. The local reservoir effect needs to be known for accurate radiocarbon (14C) dating of samples with possible aquatic carbon sources, such as human bones or food residues on pottery. Therefore, this paper attempts to calculate the local reservoir effect for the study area. I will discuss the possibilities and limitations when analyzing 14C dates from a rescue excavation. When applying the estimated reservoir corrections to a hoard of jaws and other bones, an interesting change in ritual activity at ca. 4000 cal BC can be observed. Furthermore, I examined 14C dates on bulk organic sediment and will discuss their implications for building chronologies and for reconstructing the environment of the Stone Age fjord. Finally, I will discuss the pitfalls and uncertainties associated with 14C dates for sea level reconstruction.

Copyright
Corresponding author
*Corresponding author. Email: bphilipp@phys.au.dk.
Footnotes
Hide All
a

current address: Aarhus AMS Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark

Footnotes
References
Hide All
Ascough, P, Cook, G, Dugmore, A. 2005. Methodological approaches to determining the marine radiocarbon reservoir effect. Progress in Physical Geography 29(4):532547.
Baeteman, C, Waller, M, Kiden, P. 2011. Reconstructing middle to late Holocene sea-level change: a methodological review with particular reference to “A new Holocene sea-level curve for the southern North Sea” presented by K.-E. Behre. Boreas 40(4):557572.
Broecker, WS, Walton, A. 1959. The geochemistry of C14 in fresh-water systems. Geochimica et Cosmochimica Acta 16:1538.
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.
Cage, AG, Heinemeier, J, Austin, WEN. 2006. Marine radiocarbon reservoir ages in Scottish coastal and fjordic waters. Radiocarbon 48(1):3143.
Dacey, JWH. 1980. Internal winds in water lilies: an adaptation for life in anaerobic sediments. Science 210(4473):10171019.
Deevey, ES, Gross, MS, Hutchinson, GE, Kraybill, HL. 1954. The natural C14 contents of materials from hard-water lakes. PNAS – Proceedings of the National Academy of Sciences of the United States of America 40:285288.
Dörfler, W, Jakobsen, O, Klooß, S. 2009. Indikatoren des nacheiszeitlichen Meeresspiegelanstiegs der Ostsee. Eine methodische Diskussion am Beispiel der Ostseeförde Schlei, Schleswig–Holstein. In: Müller J, et al., editors. Zwischen Nord– und Ostsee 1997–2007. Bonn. p 177.
Eglinton, TI, Aluwihare, LI, Bauer, JE, Druffel, ERM, McNichol, AP. 1996. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating. Analytical Chemistry 68:904912.
Eiríksson, J, Larsen, G, Knudsen, KL, Heinemeier, J, Símonarson, LA. 2004. Marine reservoir age variability and water mass distribution in the Iceland Sea. Quaternary Science Reviews 23:22472268.
Haslam, SM. 2010. A Book of Reed (Phragmites australis (Cav) Trin. ex Steudel, Phragmites communis Trin). Forrest Text. 254 p.
Hatté, C, Jull, AJT. 2013. 14C of plant macrofossils. In: Elias SA, Mock CJ, editors. Encyclopedia of Quaternary Science. Amsterdam: Elsevier. p 361367.
Hedenström, A, Possnert, G. 2001. Reservoir ages in Baltic Sea sediment – a case study from the Litorina stage. Quaternary Science Reviews 20:17791785.
Heier-Nielsen, S, Heinemeier, J, Nielsen, HL, Rud, N. 1995. Recent reservoir ages for Danish fjords and marine waters. Radiocarbon 37(3):875882.
Heikkinen, A, Äikää, O. 1977. Geological Survey of Finland radiocarbon measurements VII. Radiocarbon 19(2):263279.
Heron, C, Craig, OE. 2015. Aquatic resources in foodcrusts: identification and implication. Radiocarbon 57(4):707719.
Holmquist, JR, Reynolds, L, Brown, LN, Southon, JR, Simms, AR, MacDonald, GM. 2015. Marine radiocarbon reservoir values in Southern California estuaries: interspecies, latitudinal, and interannual variability. Radiocarbon 57(3):449458.
Ingram, BL, Southon, JR. 1996. Reservoir ages in Eastern Pacific coastal and estuarine waters. Radiocarbon 38(3):573582.
Jakobsen, O, Meurers-Balke, J, Hoffmann-Wieck, G, Thiede, J. 2004. Postglazialer Meeresspiegelanstieg in der südwestlichen Ostsee. In: Schernewski G, Dolch T, editors. Ergebnisse der 22. Jahrestagung des Arbeitskreises “Geographie der Meere und Küsten” Coastline Report 1. Warnemünde. p 921.
Keaveney, EM, Reimer, PJ. 2012. Understanding the variability in freshwater radiocarbon reservoir offsets: a cautionary tale. Journal of Archaeological Science 39(5):13061316.
Lanting, JN, van der Plicht, J. 1998. Reservoir effects and apparent 14C ages. The Journal of Irish Archaeology 9:151165.
Lougheed, BC, Filipsson, HL, Snowball, I. 2013. Large spatial variations in coastal 14C reservoir age—a case study from the Baltic Sea. Climate of the Past 9(3):10151028.
Nehring, S, Leuchs, H. 2000. Wiederfund der ‘verschollenen’ Netzreusenschnecke Nassarius reticulatus (Linnaeus, 1758) in der Mecklenburger Bucht. Archiv der Freunde der Naturgeschichte in Mecklenburg 39:105114.
Olsen, J, Rasmussen, P, Heinemeier, J. 2009. Holocene temporal and spatial variation in the radiocarbon reservoir age of three Danish fjords. Boreas 38(3):458470.
Olsson, IU. 1976. The radiocarbon content of various reservoirs. In: Berger R, Suess HE, editors. Radiocarbon Dating: Proceedings of the Ninth International Conference, Los Angeles and La Jolla, 1976. University of California Press. p 613–8.
Olsson, IU. 1979. A warning against radiocarbon dating of samples containing little carbon. Boreas 8(2):203207.
Olsson, IU, El-Daoushy, F, Vasari, Y. 1983. Säynäjälampi and the difficulties inherent in the dating of sediments in a hard-water lake. Hydrobiologia 103(1):514.
Philippsen, B, Kjeldsen, H, Hartz, S, Paulsen, H, Clausen, I, Heinemeier, J. 2010. The hardwater effect in AMS 14C dating of food crusts on pottery. Nuclear Instruments and Methods in Physics Research Section B 268(7–8):995998.
Philippsen, B. 2012. Variability of Freshwater Reservoir Effects: Implications for Radiocarbon Dating of Prehistoric Pottery and Organisms from Estuarine Environments. Aarhus University.
Philippsen, B. 2013. The freshwater reservoir effect in radiocarbon dating. Heritage Science 1:24.
Philippsen, B, Heinemeier, J. 2013. Freshwater reservoir effect variability in northern Germany. Radiocarbon 55(2–3):10851101.
Philippsen, B, Olsen, J, Lewis, JP, Rasmussen, P, Ryves, DB, Knudsen, KL. 2013. Mid- to late-Holocene reservoir age variability and isotope-based palaeoenvironmental reconstruction in the Limfjord, Denmark. The Holocene 23(7):10151025.
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.
Rößler, D, Moros, M, Lemke, W. 2011. The Littorina transgression in the southwestern Baltic Sea: new insights based on proxy methods and radiocarbon dating of sediment cores. Boreas 40(2):231241.
Sørensen, SA. 2017. Denmark’s largest Stone Age excavation. Mesolithic Miscellany, submitted.
Winn, K, Erlenkeuser, H, Nordberg, K, Gustafsson, M. 1998. Paleohydrography of the Great Belt, Denmark, during the Littorina transgression: the isotope signal. Meyniana 50:237251.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Radiocarbon
  • ISSN: 0033-8222
  • EISSN: 1945-5755
  • URL: /core/journals/radiocarbon
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Philippsen supplementary material
Table S1

 Word (126 KB)
126 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed