Hostname: page-component-6b989bf9dc-cvxtj Total loading time: 0 Render date: 2024-04-14T16:57:38.827Z Has data issue: false hasContentIssue false

The Sharp Rise of Δ14C ca. 800 cal BC: Possible Causes, Related Climatic Teleconnections and the Impact on Human Environments

Published online by Cambridge University Press:  18 July 2016

Bas Van Geel
Affiliation:
The Netherlands Center for Geo-ecological Research, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
Johannes Van Der Plicht
Affiliation:
Center for Isotope Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
M. R. Kilian
Affiliation:
The Netherlands Center for Geo-ecological Research, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands Center for Isotope Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
E. R. Klaver
Affiliation:
The Netherlands Center for Geo-ecological Research, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
J. H. M. Kouwenberg
Affiliation:
The Netherlands Center for Geo-ecological Research, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
H. Renssen
Affiliation:
The Netherlands Center for Geo-ecological Research, Free University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
I. Reynaud-Farrera
Affiliation:
Paléoenvironnements et Palynologie, ISEM, UMR 5554, Case 061, Université de Montpellier-II, 34095 Montpellier Cedex 5, France
H. T. Waterbolk
Affiliation:
Biologisch Archeologisch Instituut, University of Groningen, Poststraat 6, 9712 ER Groningen, the Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this study we report on accelerator mass spectrometry (AMS) wiggle-match dating of selected macrofossils from organic deposits ca. 800 cal bc (ca. 2650 bp). Based on paleological, archaeological and geological evidence, we found that the sharp rise of atmospheric 14C between 850 and 760 cal bc corresponds to the following related phenomena:

  1. 1. In European raised bog deposits, the changing spectrum of peat forming mosses and a sharp decline in decomposition of the peat indicate a sudden change from relatively dry and warm to cool, moist climatic conditions.

  2. 2. As a consequence of climate change, there was a fast and considerable rise of the groundwater table so that peat growth started in areas that were already marginal from a hydrological point of view.

  3. 3. The rise of the groundwater table in low-lying areas of the Netherlands resulted in the abandonment of settlement sites.

  4. 4. The contemporaneous earliest human colonization of newly emerged salt marshes in the northern Netherlands (after loss of cultivated land) may have been related to thermal contraction of ocean water, causing a temporary stagnation in the relative sea-level rise.

Furthermore, there is evidence for synchronous climatic change in Europe and on other continents (climatic teleconnections on both hemispheres) ca. 2650 bp. We discuss reduced solar activity and the related increase of cosmic rays as a cause for the observed climatological phenomena and the contemporaneous rise in the 14C-content of the atmosphere. Cosmic rays may have been a factor in the formation of clouds and precipitation, and in that way changes in solar wind were amplified and the effects induced abrupt climate change.

Type
Part 1: Methods
Copyright
Copyright © The American Journal of Science 

References

Beer, J., Joos, F., Lukasczyk, C., Mende, W., Rodriguez, J., Siegenthaler, U. and Stellmacher, R. 1994 10Be as an indicator of solar variability and climate. In Nesme-Ribes, E., ed, The Solar Engine and Its Influence on Terrestrial Atmosphere and Climate. NATO ASI series I 25. Berlin-Heidelberg, Springer Verlag: 221233.Google Scholar
Boersma, J. W. 1983 De opgraving Middelstum-Boerdamsterweg in een notedop. In Kooi, P. B., ed., Leven langs de Fivel: Van Helwerd tot Zwart Lap. In Middelstum-Kantens. Bijdragen tot de plattelandsge-schiedenis met een beschrijving van de boerderijen en hun bewoners. Kantens: 3135.Google Scholar
Bonnefille, R. and Riollet, G. 1988 The Kashiru pollen sequence (Burundi). Paleoclimatic implications for the last 40 000 yr BP in tropical Africa. Quaternary Research 30: 1935.CrossRefGoogle Scholar
Bray, J. R. 1968 Glaciation and solar activity since the fifth century BC and the solar cycle. Nature 220: 672674.Google Scholar
Broecker, W. S. 1992 The strength of the nordic heat pump. In Bard, E. and Broecker, W. S., eds., The Last Deglaciation: Absolute and Radiocarbon Chronologies. NATO ASI Series 12. Berlin, Springer Verlag: 173180.CrossRefGoogle Scholar
Christoforou, P. and Hameed, S. 1997 Solar cycles and the Pacific “centers of action”. Geophysical Research Letters 24: 293296.Google Scholar
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. and Hammer, C. U. 1984 North Atlantic climatic oscillations revealed by deep Greenland ice cores. In Hansen, J. E. and Takahashi, T., eds., Climate Processes and Climate Sensitivity. Geophysical Monograph 29: 288298.Google Scholar
Davis, O. K., Jirikowic, J. and Kalin, R. M. 1992 Radiocarbon record of solar variability and holocene climatic change in coastal southern California. In Redmond, K. T., ed., Proceedings of the Eighth Annual Pacific Climate (PACLIM) Workshop, March 10–13, 1991. California Department of Water Resources Interagency Ecological Studies Program Technical Report 31: 1933.Google Scholar
De Foresta, H. 1990 Origine et évolution des savanes intramayombiennes (RP du Congo) II. Apports de la botanique forestière. In Lanfranchi, R. and Schwartz, D., eds., Paysages Quaternaires de l'Afrique Centrale Atlantique. Paris, ORSTOM: 236355.Google Scholar
Duplessy, J. C., Labeyrie, L., Arnold, M., Paterae, M., Duprat, J. and van Weering, T. C. E. 1992 Changes in surface salinity of the North Atlantic Ocean during the last deglaciation: Nature 358: 485488.CrossRefGoogle Scholar
Elenga, H., Schwartz, D. and Vincens, A. 1992 Changements climatiques et action anthropique sur le littoral congolais au cours de l'Holocène. Bulletin de la Société Géologique de France 163(1): 8390.Google Scholar
Elenga, H., Schwartz, D., Vincens, A., Bertaux, J., de Namur, C., Martin, L., Wirrmann, D. and Servant, M. 1996 Diagramme pollinique holocène du lac Kitina (Congo): Mise en évidence de changements paléobotaniques et paléoclimatiques dans le massif forestier du Mayombe. Comptes Rendus de l'Academie des Sciences 323(IIa): 403–410.Google Scholar
Elenga, H., Schwartz, D. and Vincens, A. 1994 Pollen evidence of late Quaternary vegetation and inferred climate changes in Congo. Palaeogeography, Palaeoclimatology, Palaeoecology 109: 345356.CrossRefGoogle Scholar
Elenga, H. and Vincens, A. 1990 Paléoenvironnements quaternaires récents des Plateaux Batéké (Congo): Étude palynologique des dépǒts de la dépression de Bilanko. In Lanfranchi, R. and Schwartz, D., eds., Paysages Quaternaires de l'Afrique Centrale Atlantique. Paris, ORSTOM: 271282.Google Scholar
Friis-Christensen, E. and Lassen, K. 1991 Length of the solar cycle: An indicator of solar activity closely associated with climate. Science 254: 698700.CrossRefGoogle ScholarPubMed
Giresse, P., Maley, J. and Brenac, P. 1994 Late Quaternary palaeoenvironments in the Lake Barombi Mbo (West Cameroon) deduced from pollen and carbon isotopes of organic matter. Palaeogeography, Palaeoclimatology, Palaeoecology 107: 6578.CrossRefGoogle Scholar
Griede, J. W. 1978 (ms.) Het ontstaan van Frieslands Noordhoek. Ph.D. thesis. Vrije Universiteit, Amsterdam.CrossRefGoogle Scholar
Haigh, J. D. 1994 The role of stratospheric ozone in modulating the solar radiative forcing of climate. Nature 370: 544546.CrossRefGoogle Scholar
Haigh, J. D. 1996 The impact of solar variability on climate. Science 272: 981984.CrossRefGoogle ScholarPubMed
Hamilton, A. C. 1987 Vegetation and climate of Mt. Elgon during the late Pleistocene and Holocene. Palaeoecology of Africa 18: 283304.Google Scholar
Harvey, L. D. D. 1980 Solar variability as a contributing factor to Holocene climatic change. Progress in Physical Geography 4: 487530.CrossRefGoogle Scholar
Jirikowic, J. L., Kalin, R. M. and Davis, O. K. 1993 Tree-ring 14C as a possible indicator of climate change. In Climate Change in Continental Isotopic Records. Geophysical Monograph 78: 353366.Google Scholar
Jolly, D., Bonnefille, R. and Roux, M. 1994 Numerical interpretation of a high resolution Holocene pollen record from Burundi. Palaeogeography, Palaeoclimatology, Palaeoecology 109: 357370.CrossRefGoogle Scholar
Kerr, R. 1995 A fickle sun could be altering earth's climate after all. Science 269: 633.CrossRefGoogle Scholar
Kilian, M. R., van der Plicht, J. and van Geel, B. 1995 Dating raised bogs: New aspects of AMS 14C wiggle matching, a reservoir effect and climatic change. Quaternary Science Reviews 14: 959966.Google Scholar
Kilian, M. R., van Geel, B. and van der Plicht, J. (ms.) 14C AMS wiggle matching of raised bog deposits and models of peat accumulation. In preparation.Google Scholar
Klaver, E. R. 1981 Een Holocene vegetatie successie in het Fochtelooerveen. Internal Report, Hugo de Vries-Laboratorium 101, University of Amsterdam.Google Scholar
Kouwenberg, J. 1985 Reconstructie van de vegetatie op en rond een Iers hoogveen uit de Midden en Late Bronstijd (ca 4600–2400 BP) te Carbury (Co. Kildare). Internal Report, Hugo de Vries-Laboratorium 187, University of Amsterdam.Google Scholar
Magny, M. 1993a Solar influences on Holocene climatic changes illustrated by correlations between past lake-level fluctuations and the atmospheric 14C record. Quaternary Research 40: 19.CrossRefGoogle Scholar
Magny, M. 1993b Un cadre climatique pour les habitats lacustres préhistoriques? Comptes Rendus de l'Académie des Sciences Paris 316(II): 1619–1625.Google Scholar
Maley, J. 1992 Commentaires sur la note de D Schwartz. Mise en évidence d'une péjoration climatique entre ca 2500 et 2000 ans BP en Afrique tropicale humide. Bulletin de la Société Géologique de France 163(3): 363365.Google Scholar
Mörner, N. A. 1995 Recorded sea level variability in the Holocene and expected future changes. In Eisma, D., ed., Climate Change: Impact on Coastal Habitation. London, Lewis Publishers: 1728.Google Scholar
O'Brien, S. R., Mayewski, P. A., Meeker, L. D., Meese, D. A., Twickler, M. S. and Whitlow, S. I. 1995 Complexity of Holocene climate as reconstructed from a Greenland ice core. Science 270: 19621964.Google Scholar
Pudovkin, M. I. and Raspopov, O. M. 1992 The mechanism of action of solar activity on the state of the lower atmosphere and meteorological parameters (a review). Geomagnetism and Aeronomy 32: 593608.Google Scholar
Rahmstorf, S. 1994 Rapid climate transitions in a coupled ocean-atmosphere model. Nature 372: 8285.CrossRefGoogle Scholar
Raspopov, O. M., Shumilov, O. I., Kasatkina, E. A., Dergachev, V. A. and Creer, K. M. 1997 Impact of cosmic ray flux variations caused by changes in geomagnetic dipole moment on climate variability. Russian Academy of Sciences IOFFE Physical-Technical Institute, Preprint 1693: 141.Google Scholar
Reynaud-Farrera, I., Maley, J. and Wirrmann, D. 1996 Végétation et climat dans les forěts du Sud-Ouest Cameroun depuis 4770 ans BP: Analyse pollinique des sédiments du Lac Ossa. Comptes Rendus de l'Académie des Sciences Paris 322(IIa): 749–755.Google Scholar
Roche, E., Bikwemu, G. and Ntaganda, C. 1988 Evolution du paléoenvironnement quaternaire au Rwanda et au Burundi. Analyse des phénomènes morphotectoniques et des données sédimentologiques et palynologiques. Travaux de la Section Scientifique et Technique Institut Français de Pondichéry XXV: 105123.Google Scholar
Roederer, J. G. 1995 Solar variability effects on climate. In Frenzel, B., Nanni, T., Galli, M. and Gläser, B., eds., Solar output and climate during the Holocene. Paläoklimaforschung - Palaeoclimate Research 16: 113.Google Scholar
Roeleveld, W. 1976 The Holocene evolution of the Groningen marine-clay district. Berichten Rijksdienst voor het Oudheidkundig Bodemonderzoek 24 (supplement): 1–133.Google Scholar
Schwartz, D. 1992 Assèchement climatique vers 3000 BP et expansion Bantu en Afrique centrale atlantique: Quelques réflexions. Bulletin de la Société Géologique de France 163(3): 353361.Google Scholar
Schwartz, D., Guillet, B. and Dechamps, R. 1990 Etude de deux flores forestières mi-holocène (6000–3000 BP) et subactuelle (500 BP) conservées in situ sur le littoral pontenegrin (Congo). In Lanfranchi, R. and Schwartz, D., eds., Paysages Quaternaires de l'Afrique Centrale Atlantique. Paris, ORSTOM: 283297.Google Scholar
Sernander, R. 1910 Die schwedischen Torfmoore als Zeugen postglazialer Klimaschwankungen. Die Veränderungen des Klimas seit dem Maximum der Letzten Eiszeit. Herausgegeben von dem Exekutivkomitee des 11. Stockholm, Internationalen Geologenkongresses: 197–246.Google Scholar
Ssemmanda, I. and Vincens, A. 1993 Végétation et climat dans le bassin du lac Albert (Ouganda, Zaïre) depuis 13 000 ans BP: Apport de la palynologie. Comptes Rendus de l'Académie des Sciences Paris 316(II): 561–567.Google Scholar
Stuiver, M., Braziunas, T. F., Becker, B. and Kromer, B. 1991 Climatic, solar, oceanic and geomagnetic influences on Late-Glacial and Holocene atmospheric 14C/12C change. Quaternary Research 35: 124.CrossRefGoogle Scholar
Stuiver, M. and Braziunas, T. F. 1989 Atmospheric 14C and century-scale solar oscillations. Nature 338:405–408.Google Scholar
Stuiver, M. and Braziunas, T. F. 1993 Sun, ocean, climate and atmospheric 14CO2: An evaluation of causal and spectral relationships. The Holocene 3: 289305.CrossRefGoogle Scholar
Stuiver, M. and Reimer, P. J. 1993 Extended 14C data base and revised CALIB 3.0 14C age calibration program. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 215230.CrossRefGoogle Scholar
Svensmark, H. and Friis-Christensen, E. 1997 Variation of cosmic ray flux and global cloud coverage: A missing link in solar-climate relationships. Journal of Atmospheric and Solar-Terrestrial Physics 59: 12251232.CrossRefGoogle Scholar
van Geel, B., Buurman, J. and Waterbolk, H. T. 1996 Archaeological and palaeoecological indications of an abrupt climate change in The Netherlands, and evidence for climatological teleconnections around 2650 BP. Journal of Quaternary Science 11: 451460.3.0.CO;2-9>CrossRefGoogle Scholar
van Geel, B., Hallewas, D. P. and Pals, J. P. 1983 A Late Holocene deposit under the Westfriese Zeedijk near Enkhuizen (Prov. of N-Holland, the Netherlands): Palaeoecological and archaeological aspects. Review of Palaeobotany and Palynology 38: 269335.CrossRefGoogle Scholar
van Geel, B. and Mook, W. G. 1989 High-resolution 14C dating of organic deposits using natural atmospheric 14C variations. Radiocarbon 31(2): 151156.CrossRefGoogle Scholar
van Geel, B., Raspopov, O. M., van der Plicht, J. and Renssen, H. (ms.) Solar forcing of abrupt climate change around 850 BC. Submitted to British Archaeological Reports.Google Scholar
Vincens, A. 1986 Diagramme pollinique d'un sondage Pléistocène supérieur – Holocène du lac Bogoria (Kenya). Review of Palaeobotany and Palynology 47: 169192.Google Scholar
Vincens, A. 1989 Les forěts claires zambéziennes du bassin Sud-Tanganyika. Evolution entre 25 000 et 6 000 ans BP. Comptes Rendus de l'Académie des Sciences Paris 308(II): 809814.Google Scholar
Vincens, A., Buchet, G., Elenga, H., Fournier, M., Martin, L., de Namur, C., Schwartz, D., Servant, M. and Wirrmann, D. 1994 Changement majeur de la végétation du lac Sinnda (vallée du Niari, Sud-Congo) consécutif à l'assèchement climatique holocène supérieur: Apport de la palynologie. Comptes Rendus de l'Académie des Sciences Paris 318(II): 1521–1526.Google Scholar
Waterbolk, H. T. 1959 Nieuwe gegevens over de herkomst van de oudste bewoners der kleistreken. Koninklijke Nederlandse Akademie van Wetenschappen, Akademiedagen 11: 1637.Google Scholar
Waterbolk, H. T. 1966 The occupation of Friesland in the prehistoric period. Berichten van de Rijksdienst voor het Oudheidkundig Bodemonderzoek 15/16: 1335.Google Scholar
Waterbolk, H. T. 1995a The Bronze Age settlement of Zwolle-Ittersumerbroek: Some critical comments. Palaeohistoria 35/36: 7387.Google Scholar
Waterbolk, H. T. 1995b De prehistorische nederzetting van Zwolle-Ittersumerbroek. Archeologie en Bouwhistorie in Zwolle 3: 123173.Google Scholar
Wigley, T. M. L. 1981 Climate and paleoclimate: What can we learn about solar luminosity variations? Solar Physics 74: 435471.Google Scholar
Wigley, T. M. L. and Kelly, P. M. 1990 Holocene climatic change, 14C wiggles and variations in solar irradiance. Philosophical Transactions of the Royal Society, London A330: 547560.Google Scholar
Wigley, T. M. L. and Raper, S. C. B. 1993 Future changes in global mean temperature and sea level. In Warrick, R. A., Barrow, E. M. and Wigley, T. M. L., eds., Climate and Sea Level Change. Cambridge, Cambridge University Press: 111133.Google Scholar
Zaitseva, G. I., Possnert, G., Alekseev, A. Y., Sementsov, A. A. and Dergachev, V. A. 1998 The first 14C dating of monuments in European Scythia. Radiocarbon, this issue.CrossRefGoogle Scholar