Skip to main content Accessibility help
×
Home

A SHORT NOTE ON MARINE RESERVOIR AGE SIMULATIONS USED IN INTCAL20

  • Martin Butzin (a1), Timothy J Heaton (a2), Peter Köhler (a1) and Gerrit Lohmann (a1)

Abstract

Beyond ~13.9 cal kBP, the IntCal20 radiocarbon (14C) calibration curve is based upon combining data across a range of different archives including corals and planktic foraminifera. In order to reliably incorporate such marine data into an atmospheric curve, we need to resolve these records into their constituent atmospheric signal and marine reservoir age. We present results of marine reservoir age simulations enabling this resolution, applying the LSG ocean general circulation model forced with various climatic background conditions and with atmospheric radiocarbon changes according to the Hulu Cave speleothem record. Simulating the spatiotemporal evolution of reservoir ages between 54,000 and 10,700 cal BP, we find reservoir ages between 500 and 1400 yr in the low- and mid-latitudes, but also more than 3000 yr in the polar seas. Our results are broadly in agreement with available marine radiocarbon reconstructions, with the caveat that continental margins, marginal seas, or tropical lagoons are not properly resolved in our coarse-resolution model.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A SHORT NOTE ON MARINE RESERVOIR AGE SIMULATIONS USED IN INTCAL20
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A SHORT NOTE ON MARINE RESERVOIR AGE SIMULATIONS USED IN INTCAL20
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A SHORT NOTE ON MARINE RESERVOIR AGE SIMULATIONS USED IN INTCAL20
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Corresponding author. Email: martin.butzin@awi.de.

References

Hide All
Alves, EQ, Macario, K, Ascough, P, Bronk Ramsey, C. 2018. The worldwide marine radiocarbon reservoir effect: Definitions, mechanisms, and prospects. Reviews of Geophysics 56:278305. doi: 10.1002/2017RG000588.
Bard, E, Arnold, M, Hamelin, B, Tisnerat-Laborde, N, Cabioch, G. 1998. Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals. An updated data base including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40:10851092.
Bard, E, Hamelin, B, Fairbanks, RG, Zindler, A. 1990. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345(6274):405410. doi: 10.1038/345405a0.
Bard, E, Ménot, G, Rostek, F, Licari, L, Böning, P, Edwards, RL, Cheng, H, Wang, Y, Heaton, TJ. 2013. Radiocarbon calibration/comparison records based on marine sediments from the Pakistan and Iberian Margins. Radiocarbon 55:19992019.
Bard, E, Rostek, F, Ménot-Combes, G. 2004a. Radiocarbon calibration beyond 20,000 14C yr B.P. by means of planktonic foraminifera of the Iberian Margin. Quaternary Research 61:204214. doi: 10.1016/j.yqres.2003.11.006.
Bard, E, Ménot-Combes, G, Rostek, F. 2004b. Present status of radiocarbon calibration and comparison records based on Polynesian corals and Iberian Margin sediments. Radiocarbon 46:11891202.
Burr, GS, Beck, JW, Taylor, FW, Recy, J, Edwards, RL, Cabioch, G, Correge, T, Donahue, DJ, O’Malley, JM. 1998. A high-resolution radiocarbon calibration between 11,700 and 12,400 calendar years BP derived from 230Th ages of corals from Espiritu Santo Island, Vanuatu. Radiocarbon 40:10931105.
Burr, GS, Galang, C, Taylor, FW, Gallup, C, Edwards, RL, Cutler, K, Quirk, B. 2004. Radiocarbon Results from a 13-Kyr BP coral from the Huon Peninsula, Papua New Guinea. Radiocarbon 46:12111224.
Butzin, M, Köhler, P, Lohmann, G. 2017. Marine radiocarbon reservoir age simulations for the past 50,000 years. Geophysical Research Letters 44(16):84738480. doi: 10.1002/2017GL074688.
Butzin, M, Prange, M, Lohmann, G. 2005. Radiocarbon simulations for the glacial ocean: The effects of wind stress, Southern Ocean sea ice and Heinrich events. Earth and Planetary Science Letters 235(1–2):4561. doi: 10.1016/j.epsl.2005.03.003.
Butzin, M, Prange, M, Lohmann, G. 2012. Readjustment of glacial radiocarbon chronologies by self-consistent three-dimensional ocean circulation modeling. Earth and Planetary Science Letters 317–318:177–184. doi: 10.1016/j.epsl.2011.11.046.
Cheng, H, Edwards, RL, Southon, J, Matsumoto, K, Feinberg, JM, Sinha, A, Zhou, W, Li, H, Li, X, Xu, Y, et al. 2018. Atmospheric 14C/12C changes during the last glacial period from Hulu Cave. Science 362(6420):12931297. doi: 10.1126/science.aau0747.
Cutler, KB, Gray, SC, Burr, GS, Edwards, RL, Taylor, FW, Cabioch, G, Beck, JW, Cheng, H, Moore, J. 2004. Radiocarbon calibration to 50 kyr BP with paired 14C and 230Th dating of corals from Vanuatu and Papua New Guinea. Radiocarbon 46:11271160.
Danilov, S, Sidorenko, D, Wang, Q, Jung, T. 2017. The Finite-volumE Sea ice–Ocean Model (FESOM2). Geoscientific Model Development 10(2):765789. doi: 10.5194/gmd-10-765-2017.
Durand, N, Deschamps, P, Bard, E, Hamelin, B, Camoin, G, Thomas, AL, Henderson, GM, Yokoyama, Y, Matsuzaki, H. 2013. Comparison of 14C and U-Th ages in corals from IODP #310 cores offshore Tahiti. Radiocarbon. 55:19471974. doi: 10.2458/azu_js_rc.v55i2.16134.
Fairbanks, RG, Mortlock, RA, Chiu, T-C, Cao, L, Kaplan, A, Guilderson, TP, Fairbanks, TW, Bloom, AL, Grootes, PM, Nadeau, M-J. 2005. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quaternary Science Reviews 24(16–17):17811796. doi: 10.1016/j.quascirev.2005.04.007.
Fiadeiro, ME. 1982. Three-dimensional modeling of tracers in the deep Pacific Ocean, II. Radiocarbon and the circulation. Journal of Marine Research 40:537550.
Heaton, TJ, Bard, E, Hughen, KA. 2013. Elastic tie-pointing—transferring chronologies between records via a Gaussian Process. Radiocarbon 55(4):19751997. doi: 10.2458/azu_js_rc.55.17777.
Heaton, TJ, Blaauw, M, Blackwell, PG, Bronk Ramsey, C, Reimer, PJ, Scott, ME. 2020. The IntCal20 approach to radiocarbon calibration curve construction: A new methodology using Bayesian splines and errors-in-variables. Radiocarbon 62. This issue.
Hesse, T, Butzin, M, Bickert, T, Lohmann, G. 2011. A model-data comparison of δ13C in the glacial Atlantic Ocean. Paleoceanography 26(3). doi: 10.1029/2010PA002085.
Hughen, K, Southon, J, Lehman, S, Bertrand, C, Turnbull, J. 2006. Marine-derived 14C calibration and activity record for the past 50,000 years updated from the Cariaco Basin. Quaternary Science Reviews 25(23–24):32163227. doi: 10.1016/j.quascirev.2006.03.014.
Hughen, KA, Southon, JR, Bertrand, CJH, Frantz, B, Zermeño, P. 2004. Cariaco Basin calibration update: Revisions to calendar and 14C chronologies for Core Pl07-58Pc. Radiocarbon 46(3):11611187. doi: 10.1017/S0033822200033075.
Hughen, KA, Southon, JR, Lehman, SJ, Overpeck, JT. 2000. Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290(5498):1951. doi: 10.1126/science.290.5498.1951.
Key, RM, Kozyr, A, Sabine, CL, Lee, K, Wanninkhof, R, Bullister, JL, Feely, RA, Millero, FJ, Mordy, C, Peng, T-H. 2004. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Global Biogeochem Cycles 18(4):GB4031. doi: 10.1029/2004GB002247.
Köhler, P, Nehrbass-Ahles, C, Schmitt, J, Stocker, TF, Fischer, H. 2017. A 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing. Earth System Science Data 9(1):363387. doi: https://doi.org/10.5194/essd-9-363-2017.
Lascu, I, Feinberg, JM, Dorale, JA, Cheng, H, Edwards, RL. 2016. Age of the Laschamp excursion determined by U-Th dating of a speleothem geomagnetic record from North America. Geology 44(2):139142. doi: 10.1130/G37490.1.
Lohmann, G. 1998. The influence of a near-bottom transport parameterization on the sensitivity of the thermohaline circulation. J. Phys. Oceanogr. 28(10):20952103. doi: 10.1175/1520-0485(1998)028<2095:TIOANB>2.0.CO;2.
Lohmann, G, Lorenz, S. 2000. On the hydrological cycle under paleoclimatic conditions as derived from AGCM simulations. J. Geophys. Res. 105(D13):1741717436. doi: 10.1029/2000JD900189.
Lund, S, Benson, L, Negrini, R, Liddicoat, J, Mensing, S. 2017. A full-vector paleomagnetic secular variation record (PSV) from Pyramid Lake (Nevada) from 47–17 ka: Evidence for the successive Mono Lake and Laschamp Excursions. Earth and Planetary Science Letters 458:120129. doi: 10.1016/j.epsl.2016.09.036.
Maier-Reimer, E, Mikolajewicz, U, Hasselmann, K. 1993. Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermohaline surface forcing. J. Phys. Oceanogr. 23(4):731757. doi: 10.1175/1520-0485(1993)023<0731:MCOTHL>2.0.CO;2.
Peterson, LC, Overpeck, JT, Kipp, NG, Imbrie, J. 1991. A high-resolution Late Quaternary upwelling record from the anoxic Cariaco Basin, Venezuela. Paleoceanography 6(1):99119. doi: 10.1029/90PA02497.
Prange, M, Lohmann, G, Paul, A. 2003. Influence of vertical mixing on the thermohaline hysteresis: Analyses of an OGCM. J. Phys. Oceanogr. 33(8):17071721. doi: 10.1175/2389.1.
Prange, M, Lohmann, G, Romanova, V, Butzin, M. 2004. Modelling tempo-spatial signatures of Heinrich Events: influence of the climatic background state. Quaternary Science Reviews 23(5–6):521527. doi: 10.1016/j.quascirev.2003.11.004.
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffman, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4): 18691887. doi: 10.2458/azu_js_rc.55.16947.
Schäfer-Neth, C, Paul, A. 2001. Circulation of the glacial Atlantic: a synthesis of global and regional modeling. In: Schäfer, P, Ritzrau, W, Schlüter, M, Thiede, J, editors. The Northern North Atlantic: A changing environment. Berlin: Springer. p. 446462.
Skinner, LC, Primeau, F, Freeman, E, Fuente, M de la, Goodwin, PA, Gottschalk, J, Huang, E, McCave, IN, Noble, TL, Scrivner, AE. 2017. Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2. Nature Communications 8:16010. doi: 10.1038/ncomms16010.
Soulet, G, Skinner, LC, Beaupré, SR, Galy, V. 2016. A note on reporting of reservoir 14C disequilibria and age offsets. Radiocarbon doi: 10.1017/RDC.2015.22.
Southon, J, Noronha, AL, Cheng, H, Edwards, RL, Wang, YJ. 2012. A high-resolution record of atmospheric C-14 based on Hulu Cave speleothem H82. Quaternary Science Reviews 33:3241. doi: 10.1016/j.quascirev.2011.11.022.
Sweeney, C, Gloor, E, Jacobson, AR, Key, RM, McKinley, G, Sarmiento, JL, Wanninkhof, R. 2007. Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Global Biogeochem Cycles. 21(2):GB2015. doi: 10.1029/2006GB002784.
Toggweiler, JR, Dixon, K, Bryan, K. 1989. Simulations of radiocarbon in a coarse-resolution world ocean model: 1. Steady state prebomb distributions. J. Geophys. Res. 94(C6):82178242. doi: 10.1029/JC094iC06p08217.

Keywords

A SHORT NOTE ON MARINE RESERVOIR AGE SIMULATIONS USED IN INTCAL20

  • Martin Butzin (a1), Timothy J Heaton (a2), Peter Köhler (a1) and Gerrit Lohmann (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.