Skip to main content Accessibility help
×
Home

SPATIAL DISTRIBUTION OF 14C IN TREE LEAVES FROM BALI, INDONESIA

  • Tamás Varga (a1), A J Timothy Jull (a1) (a2) (a3), Zsuzsa Lisztes-Szabó (a1) and Mihály Molnár (a1)

Abstract

The increase of fossil-fuel-derived CO2 in the atmosphere has led to the dilution of the atmospheric radiocarbon concentration, but due to the costly instrumentation, the continuous atmospheric 14C/12C data is incomplete in developing countries, such as in Indonesia. These data give useful information about the level of local and regional fossil emissions. In this study, 14C AMS measurements of local vegetation and woody plant species samples have been used to estimate the rate of fossil-fuel-derived carbon in the plants, which fix the CO2 from the atmosphere by photosynthesis. Evergreen leaf samples were collected in September 2018 on the island of Bali in different, diverse districts in local and urban areas. The samples from the densely populated areas show observable fossil fuel emissions and show that the Δ14C level is close to zero ‰, similar to the natural level.

Copyright

Corresponding author

*Corresponding author. Email: varga.tamas@atomki.mta.hu.

References

Hide All
Alessio, M, Anselmi, S, Conforto, L, Improta, S, Manes, F, Manfra, L. 2002. Radiocarbon as a biomarker of urban pollution in leaves of evergreen species sampled in Rome and in rural areas (Lazio-Central Italy). Atmospheric Environment 36:54055416
Baydoun, R, Samad, OEL, Nsouli, B, Younes, G. 2015. Measurement of 14C content in leaves near a cement factory in Mount Lebanon. Radiocarbon 57(1):153159
Bella, F, Alessio, M, Fratelli, P. 1968. A determination of the half-life of 14C. Il Nuovo Cimento 58B:233246
Berhanu, TA, Szidat, S, Brunner, D, Satar, E, Schanda, R, Nyfeler, P, Battaglia, M, Steinbacher, M, Hammer, S, Leuenberger, M. 2017. Estimation of the fossil fuel component in atmospheric CO2 based on radiocarbon measurements at the Beromünster tall tower, Switzerland. Atmospheric Chemistry and Physics 17:1075310766.
Buzinny, M. 2006. Radioactive graphite dispersion in the environment in the vicinity of the Chernobyl Nuclear Power Plant. Radiocarbon 48(3):451458.
Cook, AC, Hainswort, LJ, Sorey, ML, Evans, WC, Southon, JR. 2001. Radiocarbon studies of plant leaves and tree rings from Mammoth Mountain, CA: a long-term record of magmatic CO2 release. Chemical Geology 177:117131.
Ewers, FW, Schmid, R. 1981. Longecity of needle fascicles of Pinus longaeva (Bristlecone Pine) and other North American pines. Oecologia 51:107115.
Fukumoto, Y, Li, X, Yasuda, Y, Okamura, M, Yamada, K, Kashima, K. 2015. The Holocene environmental changes in southern Indonesia reconstructed from highland caldera lake sediment in Bali Island. Quaternary International 374:1533l.
Graven, HD 2015. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century. Proceedings of the National Academy of Sciences of the United States of America 112(31):95429545.
Janovics, R, Futó, I, Molnár, M. 2018. Sealed tube combustion method with MnO2 for AMS 14C measurement. Radiocarbon 60(5):13471355.
Janovics, R, Kelemen, DI, Kern, Z, Kapitány, S, Veres, M, Jull, AJT, Molnár, M. 2016. Radiocarbon signal of a low and intermediate level radioactive waste disposal facility in nearby trees. Journal of Environmental Radioactivity 153:1014.
Janovics, R, Kern, Z, Güttler, D, Wacker, L, Barnabás, I, Molnár, M. 2013. Radiocarbon impact on a nearby tree of a light-water VVER-type nuclear power plant, Paks, Hungary. Radiocarbon 55(2–3):826832.
Kuc, T, Zimnoch, M. 1998. Changes of the CO2 sources and sink in polluted urban area (southern Poland) over las decade, deriving from the carbon isotope composition. Radiocarbon 40(1):417423.
Levin, I, Kromer, B, Schmidt, M, Sartorius, H. 2003. A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observation. Geophysical Research Letters 30(23):2194.
Levin, I, Naegler, T, Kromer, B, Diehl, M, Francey, RJ, Gomez-Pelaez, AJ, Steele, LP, Wagenbach, D, Weller, R, Worthy, DE. 2010. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2. Tellus B (62B):2646
Major, I, Haszpra, L, Rinyu, L, Futó, I, Bihari, Á, Hammer, S, Molnár, M. 2018. Temporal variation of atmospheric fossil and modern CO2 excess at a Central European rural tower station between 2008 and 2014. Radiocarbon 60(5):12851299.
McNeely, R. 1994. Long-term environmental monitoring of 14C levels in the Ottawa region. Environment International 20(5):675679.
Molnár, M, Janovics, R, Major, I, Orsovszki, J, Gönczi, R, Veres, M, Leonard, AG, Castle, SM, Lange, TE, Wacker, L, Hajdas, I, Jull, AJT. 2013. Status report of the new AMS 14C sample preparation lab of the Hertelendi Laboratory of Environmental Studies (Debrecen, Hungary). Radiocarbon 55(2–3):665676.
National Oceanic and Atmospheric Administration (NOAA), Earth System Research Laboratory, Global Monitoring Division. 2019. Mauna Loa CO2 annual mean data. Dataset: ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_annmean_mlo.txt [accessed 12 June 2019].
Nydal, R, Lövseth, K. 1983. Tracing bomb 14C in the atmosphere 1962–1980. Journal of Geophysical Research 88(6):36213642.
Pataki, DE, Randerson, TJ, Wang, W, Herzenach, MK, Grulke, NE. 2010 The carbon isotopic composition of plants and soils as a biomarkers of pollution In: West, JB, Bowen, GJ, Dawson, TE, Tu, KP, editors. Isoscapes: Understanding movement, pattern, and process on Earth through isotope mapping. Dordrecht: Springer. p. 407423.
Pawelczyk, S, Pazdur, A. 2004. Carbon isotopic composition of tree rings as a tool for biomonitoring CO2 level. Radiocarbon 46(2):701719.
Pazdur, A, Nakamura, T, Pawelczyk, S, Pawlyta, J, Piotrowska, N, Rakowski, A, Sensula, B, Szczepanek, M. 2007. Carbon isotopes in tree rings: climate and the Suess effect interferences in the last 400 years. Radiocarbon 49(2):775788.
Povinec, P, Kwong, L.L.W, Kaizer, J, Molnár, M, Nies, H, Palcsu, L, Papp, L, Pham, M.K, Jean-Baptise, P. 2017. Impact of the Fukushima accident on tritium, radiocarbon, and radiocesium levels in seawater of the western North Pacific Ocean: A comparison with pre-Fukushima situation. Journal of Environmental Radioactivity 166:5666.
Quarta, G, Rizzo, G.A, D’elia, M, Calcagnile, L. 2007. Spatial and temporal reconstruction of the dispersion of anthropogenic fossil CO2 by 14C AMS measurements of plant material. Nuclear Instruments and Methods in Physics Research B 259:421425.
Rahayu, H, Haigh, R, Amaratunga, D. 2018 Strategic challenges in development planning for Denpasar City and the coastal urban agglomeration of Sabagita. Procedia Engineering 2012: 13471354.
Rakowski, AZ. 2011. Radiocarbon method in monitoring of fossil fuel emission. Geochronometria 38(4):314324.
Rinyu, L, Molnár, M, Major, I, Nagy, T, Veres, M, Kimák, Á, Wacker, L, Synal, H-A. 2013. Optimization of sealed tube graphitization method for environmental 14C studies using MICADAS. Nuclear Instruments and Methods in Physics Research B 294:270275.
Shore, JS, Cook, GT. 1995. The 14C content of modern vegetation samples from the flanks of the Katla volcano, Southern Iceland. Radiocarbon 37(2):525529.
Southon, JR, Magana, AL. 2010. A comparison of cellulose extraction and ABA pretreatment methods for AMS 14C dating of ancient wood. Radiocarcon 52(2–3):13711379.
Stenström, KE, Skog, G, Georgiadou, E, Grenberg, J, Johansson, A. 2011. A guide to radiocarbon units and calculations: Lund University [Sweden], Department of Physics, Division of Nuclear Physics Internal Report LUNFD6(NFFR-3111)/1-17/(2011).
Stuiver, M, Polach, H. 1977. Discussion: Reporting of 14C data. Radiocarbon 19(3):355363.
Suess, HE. 1955. Radiocarbon concentration in modern wood. Science 122:415417.
Synal, HA, Stocker, M, Suter, M. 2007. MICADAS: A new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research B 259(1):713.
The International Plant Names Index (IPNI). 2019. Published on the Internet http://www.ipni.org [accessed 1 June 2019].
Varga, T, Barnucz, P, Major, I, Lisztes-Szabó, Zs, Jull, AJT, László, E, Pénzes, J, Molnár, M. 2019. Fossil carbon load in urban vegetation for Debrecen, Hungary. Radiocarbon 61(5). doi:10.1017/RDC.2019.81.
Varga, T, Major, I, Janovics, R, Kurucz, J, Veres, M, Jull, AJT, Péter, M, Molnár, M. 2018. High-precision biogenic fraction analyses of liquid fuels by 14C AMS at HEKAL. Radiocarbon 60(5):13171325.
Wacker, L, Christl, M, Synal, HA. 2010. Bats: A new tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research B 268:976979.

Keywords

SPATIAL DISTRIBUTION OF 14C IN TREE LEAVES FROM BALI, INDONESIA

  • Tamás Varga (a1), A J Timothy Jull (a1) (a2) (a3), Zsuzsa Lisztes-Szabó (a1) and Mihály Molnár (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed