Skip to main content Accessibility help


  • Ferenc Székely (a1), József Deák (a2), Péter Szűcs (a3), László Kompár (a1), Balázs Zákányi (a1) and Mihály Molnár (a4)...


Verification of a groundwater flow model by radiocarbon (14C) data are presented taking into consideration the paleo-hydrogeological changes. Northeastern area of the Great Hungarian Plain was a deep-lying flat area, and its central part (Nyírség) has been uplifted in the last 15,000 years. These geological events have drastically changed the hydrogeological conditions of Nyírség. The groundwater flow system is composed of the Quaternary-Pliocene-Upper Pannonian clastic sediments. Groundwater flow modeling has been performed to define the main lateral and vertical flow directions and velocities controlling the propagation of the environmental radioactive tracer 14C. Solute-transport modeling was used to calculate the 14C activity. The recent steady-state groundwater flow velocity was reduced to a reasonable value characterizing the average flow velocity over the 15 ka simulation period using “trial and error” method. The best fit between the simulated and measured 14C data was achieved by assuming 0.4 flow velocity reduction factor. Results indicate that the present steady-state flow model with this flow velocity reduction factor is capable of reproducing the observed 14C data taking into account the effect of the significant uplift of the part of the land surface in the last 15 ka in NE Hungary.


Corresponding author

*Corresponding author. Email:


Hide All
AQUAVEO LLC. 2013. Groundwater modeling system GMS 10.0 software.
Clark I, Fritz P. 1999. Environmental isotopes in hydrogeology. 2nd ed. Boca Raton (FL): CRC Press.
Cook, PG, and Herczeg, AL. 2000. Environmental tracers in subsurface hydrology. Australia: CSIRO Land and Water.
Deák, J. 1979. Environmental isotopes and water chemical studies for groundwater research in Hungary. Isotope Hydrology 1978. Vienna: IAEA. p. 221249.
Deák, J, Stute, M, Rudolph, J, Sonntag, C. 1987. Determination of the flow regime of Quaternary and Pliocene layers in the Great Hungarian Plain (Hungary), by D, 18O, 14C and noble gas measurements. Isotope Techniques in Water Resources Development. Vienna: IAEA. p. 335350.
Deák, J. 1995. Study of groundwater recharge using isotope methods on the Great Hungarian Plain. VITUKI Final Report. Budapest. p. 128. In Hungarian.
Deák, J, Deseő, É, Davidesz, K. 1996. Verification of MODFLOW modeling in SE Hungary using environmental isotope and ground water quality data. Hydroinformatics. Zürich: Balkema. p. 607612.
Dénes Gy, Deák J. 1981. Environmental isotope studies of groundwater. VITUKI Final Report. Budapest. 400 p. In Hungarian.
Diersch, HJG. 2005. WASY software FEFLOW. Reference manual. Berlin:WASY GmBH. p. 1292.
Demeter, G, Püspöki, Z, Lazányi, J, Buday, T. 2010. Sequence stratigraphic analysis in the Nyíregyháza-Szatmárnémeti area. Debrecen: Dominium Publisher. p. 1289. In Hungarian.
Erdélyi, M. 1976. Outlines of the hydrodynamics and hydrochemistry of the Pannonian Basin. Acta Geologica Academiae Scientiarum Hungaricae, Tomus 20(3–4):287309
Fritz, P, Fontes, JCh. 1980. Handbook of environmental isotope geochemistry. Vol. 1. Amsterdam-Oxford-New York: Elsevier.
IAEA (International Atomic Energy Agency). 1996. Manual on mathematical models in isotope hydrogeology. IAEA-TECDOC-910. p. 1206.
IAEA (International Atomic Energy Agency). Water resources programme: sampling procedures for isotope hydrology. Vienna: IAEA.
IAEA (International Atomic Energy Agency). 2000. Environmental isotopes in the hydrological cycle, principles and applications. Vienna: IAEA. p. 1280.
IAEA (International Atomic Energy Agency). 2013. Isotope methods for dating old groundwater. Chapter 10, Numerical flow models and their calibration using tracer-based ages. Vienna: IAEA. p. 245258.
Marton L, Erdélyszky Zs, Rajner V. 1980. Environmental isotope studies in groundwater of Debrecen and Nyírség area. Hidrológiai Közlöny 60. évf. 2. sz: 8594. In Hungarian.
Marton, L. 1981. Use of environmental isotopes in study of deep groundwater in Nyírség area [dissertation]. Budapest: Budapest University of Technology. In Hungarian.
Mezősi, G. 2011. Az Alföld természeti képének kialakulása (Evolution of the natural landscape of the Great Hungarian Plane). In: Rakonczai, J, editor. Környezeti változások és az Alföld 7. kötet. Békéscsaba: Nagyalföld Alapítvány Kötetei p. 1524. In Hungarian.
Pearson, FJ. 1965. Use of 13C/12C ratios to correct radiocarbon ages of materials initially diluted by limestone. Proc. 6th International Conference of Radiocarbon and Tritium Dating, Pullman, WA, USA.
Salmon, SU, Prommer, H, Park, J, Meredith, JV, Turner, KT, McCallum, JL. 2015. A general reactive transport modelling framework for simulating and interpreting groundwater 14C age and δ13C. Water Resources Research 51(1):359376.
Sanford, WE. 2011. Calibration of models using groundwater age. Hydrogeology Journal 19(1): 1316.
Sanford, WE, Révész, K, Deák, J. 2001. Inverse modeling using 14C ages: application to groundwater in the Danube-Tisza interfluvial region of Hungary. In: Seiler, KP, Wohnlich, S, editors. New approaches characterizing groundwater flow. Proceedings of the 31st Annual Congress of IAH, Munnich, 10–14 September. p. 401404.
Siade, A, Prommer, H, Suckow, A, Raiber, M. 2018. Using numerical groundwater modelling to constrain flow rates and flow paths in the surat basin through environmental tracer data. Final Report. Australia: CSIRO. p. 140.
Stute, M, Deák, J. 1989. Environmental isotope study (14C, 13C, 18O, D, noble gases) on deep groundwater circulation systems in Hungary with reference to paleoclimate. Radiocarbon 31(3): 902918.
Suckow, A. 2014. The age of groundwater—definitions, models and why we do not need this term. Applied Geochemistry 50:222230.
Székely, F. 1990. Coupled flow and advective transport simulation in multi-layer leaky aquifer systems. Groundwater Monitoring and Management. Proceedings of the Dresden Symposium (March 1987). IAHS Publication 173:305314.
Székely, F. 2006. Hydrogeologic modeling study in the porous aquifer system of NE Hungary. Hidrológiai Közlöny (86. évf.), 4 sz: 2328. In Hungarian.
Székely, F, Deák, J, Szűcs, P, Zákányi, B. 2015. Using environmental isotopes in calibration of hydrodynamic models. Research report. University of Miskolc. p. 133. In Hungarian.
Székely, F, Deák, J, Szűcs, P, Kovács, B, Kompár, L, Zákányi, B, Molnár, M. 2017. Numerical simulation of the radiocarbon concentration in the Lower Pleistocene aquifer at the NE part of the Great Hungarian Plain. 2nd International Radiocarbon in the Environment Conference Programme 3–7 July, 2017, Debrecen, Hungary.
Szucs, P, Civan, F, Virag, M. 2006. Applicability of the most frequent value method in groundwater modeling. Hydrogeology Journal 14(1–2):3143.
Szűcs, P, Kompár, L, Palcsu, L, Deák, J. 2015: Estimation of groundwater replenishment change at a Hungarian recharge area. Carpathian Journal of Earth and Environmental Sciences 10(4): 227246.
Van Genuchten MTh. 1981. Analytical solutions for chemical transport with simultaneous adsorption, zero-order production and first-order decay. Journal of Hydrology 49(3–4):213233.
Virág, M. 2013. Complex hydrogeological study of the groundwater bearing aquifers in the upper Tisza region [dissertation]. Miskolc: University of Miskolc. In Hungarian.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed