Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T00:41:57.779Z Has data issue: false hasContentIssue false

An overview of exposure parameters, dose measurements and strategies for dose reduction in pediatric CT examinations

Published online by Cambridge University Press:  06 November 2013

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

CT scanning technology is a valuable tool to diagnose many diseases; however, the level of the radiation dose is a source of concern, especially for children. CT scan systems and dose measurement methods have evolved over the years; but reported pediatric effective doses (EDs) have sometimes exceeded the annual dose limit recommended by the ICRP (1 mSv per year for persons under 18 years) (ICRP, 2007a). Efforts have been made to reduce organ doses and EDs by adjusting the scan parameters. This paper describes the determinants of the ED, and the dose reduction techniques in pediatric imaging from the early age of CT examinations until now. The first epidemiological results regarding the associated risk of cancer are also briefly presented.

Type
Research Article
Copyright
© EDP Sciences, 2013

References

Arch, M.E., Frush, D.P. (2008) Pediatric body MDCT: a 5-Year follow-up survey of scanning parameters used by pediatric radiologists, Am. J. Roentgenol. 191, 611-617. Google ScholarPubMed
Axelsson, B., Persliden, J., Schuwert, P. (1996) Dosimetry for computed tomography examination of children, Radiat. Prot. Dosim. 64, 221-226. Google Scholar
BEIR VII Phase 2 (2005) Health risks from exposure to low levels of ionizing radiation, The national academies press, 1-423.
Bernier, M.O. et al. (2012) Radiation exposure from CT in early childhood: a French large-scale multicentre study, Brit. J. Radiol. 85, 53-60. Google ScholarPubMed
Boone, J.M., Geraghty, E.M., Seibert, J.A., Wootton-Gorges, S.L. (2003) Dose reduction in pediatric CT: a rational approach, Radiology 228, 352-360. Google ScholarPubMed
Brasch, R.C., Boyd, D.P., Gooding, C.A. (1978) Computer tomographic scanning in children: comparison of radiation dose and resolving power of commercial CT scanners, Am. J. Roentgenol. 131, 95-101. Google Scholar
Brasch, R.C., Cann, C.E. (1982) Computer tomographic scanning in children: II an updated comparison of radiation dose and resolving power of commercial CT scanners, Am. J. Roentgenol. 138, 127-133. Google Scholar
Brenner, D.J. (2002) Estimating cancer risks from pediatric CT: going from the qualitative to the quantitative, Pediatr. Radiol. 32, 228-231. Google ScholarPubMed
Brenner, D.J. (2010) Slowing the increase in the population dose resulting from CT scans, Radiat. Meas. 174, 809-815. Google ScholarPubMed
Brenner, D.J., Elliston, C.D., Hall, E.J., Berdon, W.E. (2001) Estimated risks of radiation- induced fatal cancer from pediatric CT, Am. J. Roentgenol. 176, 289-296. Google ScholarPubMed
Brody, A.S., Frush, D.P., Huda, W., Brent, R.L. (2007) Radiation risk to children from computed tomography, Pediatrics 120, 677-682. Google ScholarPubMed
Caon, M., Bibbo, G., Pattison, J. (2000) Monte Carlo calculated effective dose to teenage girls from computed tomography examinations, Radiat. Prot. Dosim. 90, 445-448. Google Scholar
Chan, C., Wong, Y., Chau, L., Yu, S., Lau, P. (1999) Radiation dose reduction in pediatric cranial CT, Pediatr. Radiol. 29, 770-775. Google Scholar
Cody, D.D., Moxley, D.M., Krugh, K.T., O’Daniel, J.C., Wagner, L.K., Eftekhari, F. (2004) Strategies for formulating appropriate MDCT techniques when imaging the chest, abdomen, and pelvis in pediatric patients, Am. J. Roentgenol. 182, 849-859. Google Scholar
Colang, J.E., Killion, J.B., Vano, E. (2007) Patient dose from CT: a literature review, Radiologic Technology 79, 17-26. Google Scholar
Coursey, C., Frush, D.P., Yoshizumi, T., Toncheva, G., Nguyen, G., Greenberg, S.B. (2008) Pediatric chest MDCT using tube current modulation: effect on radiation dose with breast shielding, Am. J. Roentgenol. 190, 54-61. Google ScholarPubMed
Donadieu, J., Roudier, C., Saguintaah, M., Maccia, C., Chiron, R (2007) Estimation of the radiation dose from thoracic CT scans in a cystic fibrosis population, CHEST 132, 1233-1238. Google Scholar
Donnelly, L.F., Frush, D.P., Nelson, R.C. (2000) Multislice helical CT to facilitate combined CT of the neck, chest, abdomen, and pelvis in children, Am. J. Roentgenol. 174, 1620-1622. Google ScholarPubMed
Donnelly, L.F. et al. (2001) Minimizing radiation dose for pediatric body applications of single-detector helical CT: strategies at a large children’s hospital, Am. J. Roentgenol. 176, 303-306. Google Scholar
Fahey, F.H. (2009) Dosimetry of Pediatric PET/CT, J. Nucl. Med. 50, 1483-1491. Google ScholarPubMed
Fearon, T., Vucich, J. (1987) Normalized pediatric organ - absorbed doses from CT examinations, Am. J. Roentgenol. 148, 171-174. Google ScholarPubMed
Fricke, B.L. et al. (2003) In-plane bismuth breast shields for pediatric CT: effects on radiation dose and image quality using experimental and clinical data, Am. J. Roentgenol. 180, 407-411. Google Scholar
Friedland, G.W., Thurber, B.D. (1996) The birth of CT, Am. J. Roentgenol. 167, 1365-1370. Google Scholar
Frush, D.P., Donnelly, L.F. (1998) Helical CT in children: technical consideration and body applications, Radiology 209, 37-48. Google Scholar
Frush, D.P. et al. (2002) Computer-simulated radiation dose reduction for abdominal multidetector CT of pediatric patients, Am. J. Roentgenol. 179, 1107-1113. Google Scholar
Frush, D.P., Donnelly, L.F., Rosen, N.S. (2003) Computed tomography and radiation risks: what pediatric health care providers should know, Pediatrics 112, 951-957. Google Scholar
Fujii, K., Aoyama, T., Koyama, S., Kawaura, C. (2007) Comparative evaluation of organ and effective doses for pediatric patients with those for adults in chest and abdominal CT examinations, Brit. J. Radiol. 80, 657-667. Google Scholar
Fujii, K. et al. (2011) Evaluation of organ doses in CT examinations with an infant anthropomorphic phantom, Radiat. Prot. Dosim. 147, 151-155. Google ScholarPubMed
Galanski M., Nagel H.D., Stamm G. (2006) Pediatric CT exposure practice in the federal republic of Germany, http://www.mh-hannover.de/fileadmin/kliniken/ diagnostische_ radiologie/ download/Report_German_ Paed-CTSurvey_2005_06.pdf.
Gbelcova, L., Nikodemova, D., Horvathova, M. (2011) Dose reduction using bismuth shielding during pediatric CT examinations in Slovakia, Radiat. Prot. Dosim. 147, 160-163. Google ScholarPubMed
Gu, J., Bednarz, B., Caracappa, P.F., Xu, X.G. (2009) The development, validation and application of a multi-detector CT (MDCT) scanner model for assessing organ doses to the pregnant patient and the fetus using Monte Carlo simulations, Phys. Med. Biol. 54, 2699-2717. Google ScholarPubMed
Hollingsworth, C., Frush, D.P., Cross, M., Lucaya, J. (2003) Helical CT of the body: a survey of techniques used for pediatric patients, Am. J. Roentgenol. 180, 401-406. Google ScholarPubMed
Huda, W., Atherton, J.V., Ware, D.E., Cumming, W.A. (1997) An approach for the estimation of effective radiation dose at CT in pediatric patients, Radiology 203, 417-422. Google Scholar
Huda, W., Scalzetti, E.M., Roskopf, M. (2000) Effective doses to patients undergoing thoracic computed tomography examinations, Med. Phys. 27, 838-844. Google Scholar
Huda, W., Chamberlain, C.C., Rosenbaum, A.E. (2001) Radiation doses to infants and adults undergoing head CT examinations, Med. Phys. 28, 393-399. Google Scholar
Huda, W., Vance, A. (2007) Patient radiation doses from adult and pediatric CT, Am. J. Roentgenol. 188, 540-546. Google Scholar
Iakovou, I., Karavida, N., Kotzassarlidou, M. (2008) The computerized tomography scans and their dosimetric safety, Hell. J. Nucl. Med. 11, 82-85. Google ScholarPubMed
ICRP Publication 60 (1990) Recommendations of the International Commission on Radiological Protection, Pergamon, 1-204.
ICRP Publication 87 (2000) Managing patient dose in computed tomography, Pergamon, 1-45.
ICRP Publication 102 (2007a) Managing patient dose in multi-detector computed tomography (MDCT), Pergamon, 1-79.
ICRP Publication 103 (2007b) The 2007 Recommendations of the International Commission on Radiological Protection, Pergamon, 1-328.
Karabulut, N., Ariyürek, M. (2006) Low dose CT: practices and strategies of radiologists in university hospitals, Diagn. Interv. Radiol. 12, 3-8. Google ScholarPubMed
Khursheed, A., Hillier, M.C., Shrimpton, P.C., Wall, B.F. (2002) Influence of patient age on normalized effective doses calculated for CT examinations, Brit. J. Radiol. 75, 819-830. Google ScholarPubMed
Kim, S., Yoshizumi, T.T., Frush, D.P., Toncheva, G., Yin, F. (2010) Radiation dose from cone beam CT in a pediatric phantom: risk estimation of cancer incidence, Am. J. Roentgenol. 194, 186-190. Google Scholar
Kim, K.P. et al. (2012) Development of a database of organ doses for pediatric and young adult CT scans in the United Kingdom, Radiat. Prot. Dosim. 150, 415-426. Google Scholar
Lee, C. et al. (2007) Organ and effective doses in pediatric patients undergoing helical multislice computed tomography examination, Med. Phys. 34, 1858-1873. Google Scholar
Lee, C. et al. (2011) Organ doses for reference adult male and female undergoing computed tomography estimated by Monte Carlo simulations, Med. Phys. 38, 1196-1206. Google ScholarPubMed
Lee, C., Kim, K.P., Long, D.J., Bolch, W.E. (2012) Organ doses for reference pediatric and adolescent patients undergoing computed tomography estimated by Monte Carlo simulation, Med. Phys. 39, 2129-2146. Google Scholar
Li X., Samei E., DeLong D.M., Jones R.P, Colsher J.G., Frush D.P. (2008) Towards assessing the diagnostic influence of dose reduction in pediatric CT: a study based on simulated lung nodules. In: Proceedings of SPIE conference on the physics of medical imaging, February 16-21, SanDiego, conf. 6913, 6913L16913L12.
Li, X. et al. (2011) Patient-specific radiation dose and cancer risk estimation in CT: Part I. Development and validation of a Monte Carlo program, Med. Phys. 38, 397-407. Google ScholarPubMed
Liu, A., Williams, L.E., Raubitschek, A.A. (1996) A CT assisted method for absolute quantitation of internal radioactivity, Med. Phys. 23, 1919-1928. Google ScholarPubMed
Lucaya, J., Piqueras, J., García-Peña, P., Enríquez, G., García-Macías, M., Sotil, J. (2000) Low-dose high-resolution CT of the chest in children and young adults: dose, cooperation, artifact incidence, and image quality, Am. J. Roentgenol. 175, 985-992. Google Scholar
Mazonakis, M., Tzedakis, A., Damilakis, J., Gourtsoyiannis, N. (2007) Thyroid dose from common head and neck CT examinations in children: is there an excess risk for thyroid cancer induction? Eur. Radiol. 17, 1352-1357. Google Scholar
McLean, D., Malitz, N., Lewis, S. (2003), Survey of effective dose levels from typical pediatric CT protocols, Australasian Radiology 47, 135-142. Google Scholar
Mettler, F.A. Jr, Wiest, P.W., Locken, J.A., Kelsey, C.A. (2000) CT scanning: patterns of use and dose, J. Radiol. Prot. 20, 353-359. Google Scholar
Moss, M., McLean, D. (2006) Pediatric and adult computed tomography practice and patient dose in Australia, Australasian Radiology 50, 33-40. Google Scholar
Muhogora, W.E. et al. (2010) Pediatric CT examinations in 19 developing countries: frequency and radiation dose, Radiat. Prot. Dosim. 140, 49-58. Google Scholar
Mukundan, S. Jr,Wang, P.I., Frush, D.P., Yoshizumi, T., Marcus, J., Kloeblen, E., Moore, M. (2007) MOSFET dosimetry for radiation dose assessment of bismuth shielding of the eye in children, Am. J. Roentgenol. 188, 1648-1650. Google ScholarPubMed
Nakayama, Y. et al. (2005) Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise, Radiology 237, 945-951. Google ScholarPubMed
Nickoloff, E.L., Alderson, P.O. (2001) Radiation exposures to patients from CT: reality, public perception, and policy, Am. J. Roentgenol. 177, 285-287. Google ScholarPubMed
Nishizawa, K. et al. (2008) Patient dose estimation for multi-detector-row CT examinations, Radiat. Prot. Dosim. 128, 98-105. Google ScholarPubMed
Pages, J., Buls, N., Osteaux, M. (2003) CT doses in children: a multicentre study, Brit. J. Radiol. 76, 803-811. Google ScholarPubMed
Papadimitriou, D., Louizi, A., Makri, T., Theodoropoulos, B., Proukakis, C. (2000) Computed tomography dosimetry in children, Radiat. Prot. Dosim. 90, 417-422. Google Scholar
Paterson, A., Frush, D.P., Donnelly, L.F. (2001) Helical CT of the body: are settings adjusted for pediatric patients? Am. J. Roentgenol. 176, 297-301. Google Scholar
Paterson, A., Frush, D.P. (2007) Dose reduction in pediatric MDCT: general principles, Clin. Radiol. 62, 507-517. Google Scholar
Pearce, M.S. et al. (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukemia and brain tumors: a retrospective cohort study, LANCET 380, 499-505. Google ScholarPubMed
Reid, J., Gamberoni, J., Dong, F., Davros, W. (2010) Optimization of kVp and mAs for pediatric low-dose simulated abdominal CT: is it best to base parameter selection on object circumference? Am. J. Roentgenol. 195, 1015-1020. Google ScholarPubMed
Rybka, K., Staniszewska, M.A., Biegañski, T. (2007) Low-dose protocol for head CT in monitoring hydrocephalus in children, Med. Sci. Monit. 13, 147-151. Google ScholarPubMed
Shrimpton, P.C., Wall, B.F. (2000) Reference doses for pediatric computed tomography, Radiat. Prot. Dosim. 90, 249-252. Google Scholar
Shrimpton, P.C., Hillier, M.C., Lewis, M.A., Dunn, M. (2006) National survey of doses from CT in the UK: 2003, Brit. J. Radiol. 79, 968-980. Google ScholarPubMed
Siegel, M.J. (2003) Multiplanar and three-dimensional multi–detector row CT of thoracic vessels and airways in the pediatric population, Radiology 229, 641-650. Google ScholarPubMed
Siegel, M.J., Schmidt, B., Bradley, D., Suess, C., Hildebolt, C. (2004) Radiation dose and image quality in pediatric CT: effect of technical factors and phantom size and shape, Radiology 233, 515-522. Google Scholar
UNSCEAR 2000, Annex D, United Nations scientific committee on the effects of atomic radiation report to the general assembly (2000) Medical Radiation Exposures, New York.
UNSCEAR 2000, Annex I, United Nations scientific committee on the effects of atomic radiation report to the general assembly (2000) Epidemiological evaluation of radiation-induced cancer, New York.
Vassileva, J. et al. (2012) IAEA survey of pediatric CT practice in 40 countries in Asia, Europe, Latin America, and Africa: Part 1, frequency and appropriateness, Am. J. Roentgenol. 198, 1021-1031. Google ScholarPubMed
Vock, P. (2005) CT dose reduction in children, Eur. Radiol. 15, 2330-2340. Google ScholarPubMed
Ware, D.E., Huda, W., Mergo, P.J., Litwiller, A.L. (1999) Radiation effective doses to patients undergoing abdominal CT examinations, Radiology 210, 645-650. Google Scholar
Wormanns, D. et al. (2001) Abdominal spiral CT in children: which radiation exposure is required? Eur. Radiol. 11, 2262-2266. Google ScholarPubMed
Xu X.G., Eckerman K.F. (2010) Applications to computed tomography for pediatric patients. In: Handbook of anatomical models for radiation dosimetry, pp. 487-510. Taylor & Francis, New York.
Yekeler, E. (2004) Pediatric abdominal applications of multidetector-row CT, Eur. J. Radiol. 52, 31-43. Google ScholarPubMed
Zankl, M., Panzer, W., Petoussi, N., Drexler, G. (1995) Organ doses for children from computed tomographic examinations, Radiat. Prot. Dosim. 57, 393-396. Google Scholar
Zeman, R.K., Baron, R.L., Jeffery, R.B. Jr,Klein, J., Siegel, M.J., Silverman, P.M. (1998) Helical body CT: evolution of scanning protocols, Am. J. Roentgenol. 170, 1427-1438. Google ScholarPubMed