Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T23:39:30.042Z Has data issue: false hasContentIssue false

Lessons from the Fukushima and Chernobyl accidents concerning the 137Cs contamination of orchard fresh fruits

Published online by Cambridge University Press:  07 May 2014

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The observations made in Japan in 2011 after the Fukushima-Daiichi accident and those made in France, Italy, Greece and Austria in 1986 after the Chernobyl fallout, show that the development stage of orchard trees at the time of atmospheric deposition is a major factor determining the level of caesium contamination in fruits at harvest. Both data sets are shown to be consistent and enable one to estimate, for mobile elements in plants such as caesium, an aggregated transfer factor (expressed in Bq.kg-1 of fresh fruit per Bq.m-2 deposited on the ground surface) whose value strongly depends on the time elapsed between fallout and harvest. The Fukushima data set also enables one to estimate effective half-lives (expressed in days), which are helpful for predicting the decrease in fruit contamination with time. We found an average value of 200 days for the one-year period after radioactive fallout, which is quite consistent with values estimated from post-Chernobyl surveys.

Type
Research Article
Copyright
© EDP Sciences, 2014

References

Anguisso la Scotti, I., Silva, S. (1992) Foliar absorption and leaf-fruit transfer of 137Cs in fruit trees, J. Environ. Radioact. 16, 97-108. Google Scholar
Antonopoulos-Domis, M., Clouvas, A., Gagianas, A. (1991) Radiocaesium dynamics in fruit trees following the Chernobyl accident, Health Phys. 61, 837-842. Google Scholar
Antonopoulos-Domis, M., Clouvas, A., Gagianas, A. (1996) Long-term radiocesium contamination of fruit trees following the Chernobyl accident, Health Phys. 71 (6), 910-914. Google Scholar
Brown J., Simmonds J. (1995) FARMLAND: a dynamic model for the transfer of radionuclides through terrestrial foodchains, Report NRPB-R273. Chilton, UK.
Brown J., Sherwood J. (2012) Modelling approach for the transfer of radionuclides to fruit species of importance in UK. Health Protection Agency, Centre for Radiation, Chemical and Environmental Hazards Chilton, Didcot, Oxfordshire OX11 ORQ.
Carini, F. (1999) Radionuclides in plants bearing fruit: an overview, J. Environ. Radioact. 46, 77-97. Google Scholar
Carini, F. (2001) Radionuclide transfer from soil to fruit, J. Environ. Radioact. 52, 237-279. Google ScholarPubMed
Carini F., Anguissola Scotti I., Montruccoli M., Silva S. (1996) 134Cs foliar contamination of vine: translocation to grapes and transfer to wine. In: Proceedings of the International Symposium on Radioecology : ten years terrestrial radioecological research following the Chernobyl accident, Austrian Soil Science Society and Federal Environment Agency, Vienna, Austria (M. Gerzabek, Ed.) pp. 163-169.
Carini, F., Lombi, E. (1997) Foliar and soil uptake of 134Cs and 85Sr by grape vines, Sci. Total Environ. 207, 157-164. Google ScholarPubMed
Carini, F., Bengtsson, G. (2001) Post-deposition transport of radionuclides in fruits, J. Environ. Radioact. 52, 215-236. Google Scholar
Champion, D., Korsakissok, I., Didier, D., Mathieu, A., Quelo, D., Groell, J., Quentric, E., Tombette, M., Benoit, J.P., Saunier, O., Parache, V., Simon-Cornu, M., Gonze, M.A., Renaud, Ph., Cessac, B., Navarro, E., Servant-Perrier, A.C. (2013) The IRSN’s earliest assessments of the Fukushima accident’s consequences for the terrestrial environment in Japan, Radioprotection 48 (1), 11-37. Google Scholar
Goor, F., Thiry, Y. (2004) Processes, dynamics and modelling of radiocaesium cycling in a chronosequence of Chernobyl-contaminated Scots pine (Pinus sylvestris L.) plantations, Sci. Total Environ. 325, 163-180. Google Scholar
International Atomic Energy Agency (2003) Modelling the transfer of radionuclides to fruit. Report of the fruits working group of BIOMASS theme 3. IAEA, Vienna. ISBN 92-0-106503-5.
Katata, G., Terada, H., Nagai, H., Chino, M. (2012a) Numerical reconstruction of high dose rate zones due to the Fukushima Daiichi Nuclear Power Plant accident, J. Environ. Radioact. 111, 2-12. Google Scholar
Katata, G., Ota, M., Terada, H., Chino, M., Nagai, H. (2012b) Atmospheric discharge and dispersion of radionuclides during the Fukushima Daiichi Nuclear Power Plant accident. Part I: Source term estimation and local-scale atmospheric dispersion in early phase of the accident, J. Environ. Radioact. 109, 103-113. Google Scholar
Korsakissok, I., Mathieu, A., Didier, D. (2013) Atmospheric dispersion and ground deposition induced by the Fukushima Nuclear power plant accident: a local-scale simulation and sensitivity study, Atmos. Environ. 70, 267-279. Google Scholar
Levain A., Mercat-Rommens C., Roussel-Debet S. (2006) Study of the radioecological sensitivity of vine after a radioactive pollution. Report IRSN/DEI/SESURE-2006-54 (in French).
Madoz-Escande C., Colle C., Hugon J., Jouglet H., Tormos J. (1997) Foliar contamination of vine crops. 1994–1995 lysimeter experiments on large soil samples extracts of the Tricastin site. Report IPSN/DPRE/SERE 97/026 (in French).
Madoz-Escande C., Colle C., Brechignac F., Jouglet H., Fernandez V. (1998) Time dependent evolution of 137Cs and 90Sr deposited as aerosols on vine. Poster presented at the 8th annual meeting of SETAC-Europe, Bordeaux 14–18 April 1998.
Maubert H., Roussel S. (1988) Results and interpretations of observations from the South-eastern France after the Chernobyl radioactive deposits in May 1986. Report CEA/IPSN/SERE, June 1988 (in French).
MEXT (2013) Monitoring information of environmental radioactivity level, http://radioactivity.nsr.go.jp/en/
MHLW (2013) Information on the Great East Japan Earthquake, http://www.mhlw.go.jp/english/topics/2011eq/index.html
Monte, L., Quaggia, S., Pompei, F., Fratarcangeli, S. (1990) The behavior of 137Cs in some edible fruits, J. Environ. Radioact. 11, 207-214. Google Scholar
Mück, K. (1997) Long-term effective decrease of caesium concentration in foodstuffs after nuclear fallout, Health Phys. 72 (5), 659-673. Google ScholarPubMed
Müller, H., Pröhl, G. (1993) ECOSYS-87: a dynamic model for assessing radiological consequences of nuclear accidents, Health Phys. 64 (3), 232-252. Google ScholarPubMed
Pröhl, G. (2009) Interception of dry and wet deposited radionuclides by vegetation, J. Environ. Radioact. 100, 675-682. Google Scholar
Renaud, Ph., Maubert, H., Bernié, J.C. (1997) The contextual parameters in post-accidental radioecology, Radioprotection 32 (2), 181-195 (in French). Google Scholar
Renaud, Ph., Pourcelot, L., Métivier, J.M., Morello, M. (2003a) Mapping of 137Cs deposition over eastern France 16 years after the Chernobyl accident, Sci. Total Environ. 309, 357-364. Google Scholar
Renaud, Ph., Colle, C., Louvat, D., Barker, E. (2003b) Influence des retombées de l’accident de Tchernobyl sur l’activité en 137Cs du vin des côtes du Rhône, Radioprotection 38 (1), 51-59. Google Scholar
SCPRI (1986) Bulletins mensuels de mesures du Service Central de protection contre les Rayonnements ionisants. Juillet 1986.
Silva, S., Anguisso la Scotti, I., Fregoni, M., Vercesi, A. (1989) Contamination radioactive du raisin en Italie, en 1986, à la suite de l’accident de la centrale nucléaire de Tchernobyl, Bulletin de l’OIV 62 (695-696), 74-84. Google Scholar
Takata D. (2013) Distribution of Radiocesium from the Radioactive Fallout in fruit trees. In: Agricultural Implications of the Fukushima Nuclear Accident (Nakanishi and K. Tanoi, Eds.) Chap. 14, pp.143-162.
Terada, H., Katata, G., Chino, M., Nagai, H. (2012) Atmospheric discharge and dispersion of radionuclides during the Fukushima Daiichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion, J. Environ. Radioact. 112, 141-154. Google Scholar