Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-29T06:50:37.158Z Has data issue: false hasContentIssue false

Vertical migration of 137Cs in the South Caspian soil

Published online by Cambridge University Press:  26 September 2012

M. Vahabi-Moghaddam
Affiliation:
Faculty of Sciences, University of Guilan, PO Box 3489, Rasht, Iran
S. Khoshbinfar
Affiliation:
Faculty of Physics, Damghan University, PO Box 41167, Damghan, Iran
Get access

Abstract

In order to study the vertical migration of anthropogenic 137Cs, soil inventories of this radionuclide were measured in two regions selected on the basis of a previous comprehensive survey in the northern Iranian province of Guilan located in the South Caspian region. Ten sampl ing stations were randomly chosen in these regions and split-level sampling was carried out to a depth of 30 cm. Sample analysis was performed using a HPGe detector system. In situ gamma measurements in both regions were als o carried out with the aid of a portable germanium spectrometer. The experimental data were then compared with the solution of the convection-dispersion equation (CDE) with the proper initial and boundary conditions to evaluate initial deposition as well as transport parameter values. The solution, including the effects of both considered sources, i.e. global fallout and Chernobyl releases, fits the measured data well. The effective convection velocity and dispersion coefficients of 137Cs lie in the range of 0-0.25 cm·y-1 and 0.32-0.75 cm2·y-1, respectively, indicating a very slow migrat ion rate in the area. Most of the deposited 137Cs still remained in the top 10-cm layer. Moreover, the fitted depth profiles were then employed to correct the surface activities of 137Cs estimated by in situ measurements.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarkrog A. (1979) Environmental studies on radioecological sensitivity and variability with special emphasis on the fallout nuclides 90Sr and 137Cs, in Risø-R-437, Risø National Laboratory, Denmark.
Almgren, S., Isaksson, M. (2006) Vertical migration studies of 137Cs from nuclear weapons fallout and the Chernobyl accident, J. Environ. Radioact. 91, 90-102. DOI: 10.1016/j.jenvrad.2006.08.008. Google ScholarPubMed
Almgren, S., Nilsson, E., Erlandsson, B., Isaksson, M. (2009) GIS supported calculations of 137Cs deposition in Sweden based on precipitation data, Sci. Total Environ. 368, 804-813. DOI: 10.1016/j.scitotenv.2006.03.020. Google Scholar
Arapis, G., Petrayev, E., Shagalova, E., Zhukova, O., Sokolikb, G., Ivanovab, T. (1997) Effective Migration Velocity of 137Cs and 90Sr as a Function of the Type of Soils in Belarus, J. Environ. Radioact. 34, 171-185. DOI: 10.1016/0265-931X(96)00013-6. Google Scholar
Beck H.L. (1972) HASL–258 In Situ Ge(Li) and NaI(Tl) Gamma ray Spectrometry, Health and Safety Laboratory, United States, New York.
Bossew, P., Kirchner, G. (2004) Modeling the vertical distribution of radionuclides in soil. Part 1: the convection-dispersion equation revisited, J. Environ. Radioact. 73, 127-150. DOI 10.1016/j.jenvrad.2003.08.006. Google Scholar
Brandt, J., Christensen, J.H., Frohn, L.M., Zlatev, Z. (2000) Numerical modelling of transport, dispersion, and deposition - validation against ETEX-1, ETEX-2 and Chernobyl, Environ. Modelling Software 15, 521-531. DOI: 10.1016/S1364-8152(00)00035-9. Google Scholar
Bunzl, K. (2001) Migration of fallout-radionuclides in the soil: effect of non-uniformity of the sorption properties on the activity-depth profiles, Radiation Environ. Biophys. 40, 237-24. DOI: ?????10.1007/s004110100102. Google ScholarPubMed
Butkus, D., Konstantinova, M. (2008) Modelling vertical migration of 137Cs in Lithuanian soils, J. Environ. Eng. Landscape Manage. 16, 23-29. DOI: 10.3846/1648-6897.2008.16.23-29. Google Scholar
Chibowski, S., Zygmunt, J. (2002) The influence of the sorptive properties of organic soils on the migration rate of 137Cs, J. Environ. Radioact. 61, 213-223. DOI: 10.1016/S0265-931X(01)00128-X. Google ScholarPubMed
Ehlken, S., Kirchner, G. (2002) Environmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: a review, J. Environ. Radioact. 58, 97-112. DOI: 10.1016/S0265-931X(01)00060-1. Google Scholar
Fattahi E. (2005) Efficiency calibration of portable HPGe gamma spectroscopy, M.Sc. Thesis, K. N. Toosi University of Technology, Tehran, Iran.
Finck R.R. (1992) High resolution field gamma spectrometry and its application to problems in environmental radiology, PhD Thesis, Malmo and Lund University, Malmo, Sweden.
Hakimian, M. (1977) Characteristics of Some Selected Soils in the Caspian Sea Region of Iran, Soil Sci. Soc. Am. J. 41, 1155-1161. DOI: 10.2136/sssaj1977.4161155x. Google Scholar
Howard, B.J., Strand, P., Assimakopoulos, P., Brechignac, F., Gasco, C., Métivier, H. et al. (2002) Estimation of radioecological sensitivity, Radioprotection 37, 1167-1173. Google Scholar
IRIMO (1986) Local branch of Iranian Meteorological Organization (in Persian).
Ivanov, Y.A., Lewyckyj, N., Levchuk, S.E., Prister, B.S., Firsakova, S.K., Arkhipov, N.P. et al. (1997) Migration of 137Cs and 90Sr from Chernobyl fallout in Ukrainian, Belarussian and Russian soils, J. Environ. Radioact. 35, 1-21. DOI: 10.1016/S0265-931X(96)00036-7. Google Scholar
Konshin, O.V. (1992) Mathematical model of 137Cs migration in soil: Analysis of observations following the Chernobyl accident, Health Phys. 63, 301-306. Google ScholarPubMed
Krichner, G., Strebl, F., Bossow, P., Ehlken, S., Gerzabek, M.H. (2009) Vertical migration of radionuclides in undisturbed grassland soils, J. Environ. Radioact. 100, 716-720. DOI: 10.1016/j.jenvrad.2008.10.010. Google Scholar
Krstic, D., Nikezi, D., Stevanovi, N., Jeli, M. (2004) Verticale profile of 137Cs in soil, Appl. Radiat. Isotopes 61, 1487-1492. Google Scholar
Likar, A., Omahen, G., Lipoglavsek, M., Vidmar, T. (2001) A theoretical description of diffusion and migration of 137Cs in soil, J. Environ. Radioact. 57, 191-201. DOI: 10.1016/S0265-931X(01)00019-4. Google ScholarPubMed
Miller K.M., Helfer I.K. (1985) In-situ measurements of 137Cs inventory in natural terrain, In Natural Radiation 85, Proceedings of the Eighteenth Midyear Topical Symposium of the Health Physics Society, Colorado Springs, Colorado, January 6-10, pp. 243-251.
NCRP (2006) Cesium-137 in the Environment: Radioecology and Approaches to Assessment and Management, NCRP Report No. 154, National Council on Radiation Protection and Measurements Pubs., Bethesda, MD.
Quelo, Q., Krysta, M., Bocquet, M., Isnard, O., Minier, Y., Sportisse, B. (2007) Validation of the Polyphemus platform on the ETEX, Chernobyl and Algeciras cases, Atmos. Environ. 41, 5300-5315. DOI: 10.1016/j.atmosenv.2007.02.035. Google Scholar
Schuller, P., Ellies, A., Kirchner, G. (1997) Vertical migration of fallout 137Cs in agricultural soils from Southern Chile, Sci. Tot. Environ. 193, 197-205. DOI: 10.1016/S0048-9697(96)05338-7. Google Scholar
Smith, J.T., Elder, D.G. (1999) A comparison of models for characterizing the distribution of radionuclides with depth in soils, Eur. J. Soil Sci. 50, 295-307. DOI: 10.1046/j.1365-2389.1999.00233.x. Google Scholar
Szerbin, P., Koblinger-Bokori, E., Koblinger, L., Vegvari, I., Ugron, A. (1999) Caesium-137 migration in Hungarian soils, Sci. Total Environ. 227, 215-227. DOI: 10.1016/S0048-9697(99)00017-0. Google Scholar
Tyler, A.N., Sanderson, D.C.W., Scott, E.M. (1996) Estimating and accounting for 137Cs source burial through in-situ gamma spectrometry in salt marsh environments, J. Environ. Radioact. 33, 195-212. DOI: 10.1016/0265-931X(95)00098-U. Google Scholar
UNSCEAR (2000) United Nations Scientific Committee on the Effects of Atomic Radiation, Sources and Effects of Ionizing Radiation, Report to the General Assembly, United Nations, New York.
Wicker, F.W., Shaw, G., Voigt, G., Holm, E. (1999) Radioactive Contamination: state of the science and its application to predictive models, Environ. Pollut. 100, 133-149. DOI: 10.1016/S0269-7491(99)00099-8.Google Scholar