Skip to main content Accessibility help
Hostname: page-component-59b7f5684b-ns2hh Total loading time: 0.312 Render date: 2022-09-30T05:49:42.356Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true


Published online by Cambridge University Press:  24 July 2018

Graduate School of Engineering, Kobe University
Department of Philosophy, University of Bristol


We relate Popper functions to regular and perfectly additive such non-Archimedean probability functions by means of a representation theorem: every such non-Archimedean probability function is infinitesimally close to some Popper function, and vice versa. We also show that regular and perfectly additive non-Archimedean probability functions can be given a lexicographic representation. Thus Popper functions, a specific kind of non-Archimedean probability functions, and lexicographic probability functions triangulate to the same place: they are in a good sense interchangeable.

Research Article
Copyright © Association for Symbolic Logic 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Benci, V., Di Nasso, M., & Forti, M. (2006). An aristotelian notion of size. Annals of Pure and Applied Logic, 143, 4353.CrossRefGoogle Scholar
Benci, V., Horsten, L., & Wenmackers, S. (2013). Non-archimedean probability. Milan Journal of Mathematics, 81, 121151.CrossRefGoogle Scholar
Benci, V., Horsten, L., & Wenmackers, S. (2018). Infinitesimal probabilities. The British Journal for the Philosophy of Science, 69(2), 509552.Google ScholarPubMed
Blume, L., Brandenburger, A., & Dekel, E. (1991). Lexicographical probabilities and choice under uncertainty. Econometrica, 59, 6179.CrossRefGoogle Scholar
Campbell-Moore, C., Horsten, L., & Leitgeb, H. (forthcoming). Probabilities for the revision theory of truth. Journal of Philosophical Logic, to appear.Google Scholar
de Finetti, B. (1949). On the Axiomatization of Probability. Translated and published as Chapter 5 in Probability, Induction, and Statistics (1972). Wiley Publications.Google Scholar
Goldblatt, R. (1998). Lectures on the Hyperreals. An Introduction to Nonstandard Analysis. Graduate Texts in Mathematics, Vol. 188. New York: Springer-Verlag.Google Scholar
Hajek, A. (2003). What conditional probability could not be. Synthese, 137, 273323.CrossRefGoogle Scholar
Halpern, J. (2010). Lexicographic probability, conditional probability, and non-standard probability. Games and Economic Behavior, 68, 155179.CrossRefGoogle Scholar
Harper, W. (1975). Rational belief change, popper functions and counterfactuals. Synthese, 30, 221262.CrossRefGoogle Scholar
Ilic-Stepic, A., Ognjanovic, Z., & Ikodinovic, N. (2014). Conditional p-adic probability logic. International Journal for Approximate Reasoning, 55, 18431865.CrossRefGoogle Scholar
Khrennikov, A. (1996). p-adic valued probability measures. Indagationes Mathematicae, 7, 311330.CrossRefGoogle Scholar
Khrennikov, A. (2008). Toward theory of p-adic valued probabilities. Studies in Logic, Grammar, and Rhetoric, 14, 137154.Google Scholar
Khrennikov, A. & Schumann, A. (2006). Logical approach to p-adic probabilities. Bulletin of Symbolic Logic, 45, 4957.Google Scholar
Kolmogorov, A. (1933). Grundbegriffe der Wahrscheinlichkeitrechnung (Ergebnisse Der Mathematik). Translated by Morrison, N. Foundations of probability. Chelsea Publishing Company (1956) 2nd English Edition.CrossRefGoogle Scholar
Krauss, P. (1968). Representation of conditional probability measures on boolean algebras. Acta Mathematica Academiae Scientiarum Hungaricae, 19, 229241.CrossRefGoogle Scholar
Kremer, P. (2014). Indeterminacy of fair infinite lotteries. Synthese, 191, 17571760.CrossRefGoogle Scholar
Leitgeb, H. (2012). A probabilistic semantics for counterfactuals. The Review of Symbolic Logic, 5, 26121.CrossRefGoogle Scholar
Levi, I. (1989). Possibility and probability. Erkenntnis, 31, 365386.CrossRefGoogle Scholar
Lewis, D. (1980). A subjectivist’s guide to objective chance. In Jeffrey, R. C., editor. Studies in Inductive Logic and Probability. Berkeley, CA: University of California Press, pp. 263293.Google Scholar
McGee, V. (1994). Learning the impossible. In Ellery, E. and Brian, S., editors. Probability and Conditionals: Belief Revision and Rational Decision. Cambridge: Cambridge University Press, pp. 179199.Google Scholar
Nelson, E. (1987). Radically Elementary Probability Theory. Princeton, NJ: Princeton University Press.Google Scholar
Norton, J. (2018). How to build an infinite lottery machine. European Journal for Philosophy of Science, 8, 7195.CrossRefGoogle Scholar
Pedersen, A. (2014). Comparative expectations. Studia Logica, 102, 811848.CrossRefGoogle Scholar
Popper, K. (1959). The Logic of Scientific Discovery. New York: Basic Books.Google Scholar
Pruss, A. (2015). Popper functions, uniform distributions, and infinite sequences. Journal of Philosophical Logic, 44, 259271.CrossRefGoogle Scholar
Renyi, A. (1955). On a new axiomatic theory of probability. Acta Mathematica Academiae Scientiarum Hungaricae, 6, 285335.CrossRefGoogle Scholar
Robinson, A. (1961). Non-standard analysis. Nederlandse Akademie van Wetenschappen, Series A: Mathematical Sciences, 64 and Indagationes Mathematicae, 23, 432440.Google Scholar
Schervish, M., Seidenfeld, T., & Kadane, J. (2017). Non-conclomerability for countably additive measures that are not κ-additive. Review of Symbolic Logic, 10, 284300.CrossRefGoogle Scholar
Schumann, A. (2008). Non-Archimedean fuzzy and probability logic. Journal of Applied Non-Classical Logics, 18, 2948.CrossRefGoogle Scholar
Schumann, A. (2014). Probabilities on streams and reflexive games. Operations Research and Decisions, 1, 7196.Google Scholar
Van Fraassen, B. (1976). Representation of conditional probabilities. Journal of Philosophical Logic, 5, 417430.CrossRefGoogle Scholar
Wenmackers, S. & Horsten, L. (2013). Fair infinite lotteries. Synthese, 190, 3761.CrossRefGoogle Scholar
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *