Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-xt4p2 Total loading time: 0.876 Render date: 2022-05-29T12:58:25.129Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

A UNIFIED THEORY OF TRUTH AND PARADOX

Published online by Cambridge University Press:  26 February 2019

LORENZO ROSSI*
Affiliation:
Department of Philosophy (KGW), University of Salzburg
*
*DEPARTMENT OF PHILOSOPHY (KGW) UNIVERSITY OF SALZBURG FRANZISKANERGASSE 1 5020 SALZBURG, AUSTRIA E-mail: lorenzo.rossi@sbg.ac.at

Abstract

The sentences employed in semantic paradoxes display a wide range of semantic behaviours. However, the main theories of truth currently available either fail to provide a theory of paradox altogether, or can only account for some paradoxical phenomena by resorting to multiple interpretations of the language, as in (Kripke, 1975). In this article, I explore the wide range of semantic behaviours displayed by paradoxical sentences, and I develop a unified theory of truth and paradox, that is a theory of truth that also provides a unified account of paradoxical sentences. The theory I propose here yields a threefold classification of paradoxical sentences—liar-like sentences, truth-teller–like sentences, and revenge sentences. Unlike existing treatments of semantic paradox, the theory put forward in this article yields a way of interpreting all three kinds of paradoxical sentences, as well as unparadoxical sentences, within a single model.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asenjo, F. G. (1966). A calculus of antinomies. Notre Dame Journal of Formal Logic, 7(1), 103105.CrossRefGoogle Scholar
Barwise, J. & Etchemendy, J. (1987). The Liar: An Essay on Truth and Circularity. Oxford: Oxford University Press.Google Scholar
Beall, J. (2001). Is Yablo’s paradox noncircular? Analysis, 61(3), 176187.CrossRefGoogle Scholar
Beall, J. (2006). True, false and paranormal. Analysis, 66(2), 102114.CrossRefGoogle Scholar
Beall, J. (2007a). Prolegomenon to future revenge. In Beall, J., editor. Revenge of the Liar. Oxford: Oxford University Press, pp. 130.Google Scholar
Beall, J. (editor) (2007b). Revenge of the Liar. Oxford: Oxford University Press.Google Scholar
Beall, J. (2009). Spandrels of Truth. Oxford: Oxford University Press.CrossRefGoogle Scholar
Beringer, T. & Schindler, T. (2017). A graph-theoretic analysis of the semantic paradoxes. Bulletin of Symbolic Logic, 23(4), 442492.CrossRefGoogle Scholar
Billon, A. (2013). The truth-tellers paradox. Logique et Analyse, 56(224), 371389.Google Scholar
Blamey, S. (2002). Partial logic. In Gabbay, D. M. and Guenthner, F., editors. Handbook of Philosophical Logic, Second Edition, Vol. V. Dordrecht: Kluwer Academic Publishers, pp. 261353.CrossRefGoogle Scholar
Bondy, A. & Murty, U. (2008). Graph Theory. London: Springer.CrossRefGoogle Scholar
Bueno, O. & Colyvan, M. (2003). Paradox without satisfaction. Analysis, 62(2), 152156.CrossRefGoogle Scholar
Burgess, J. (1986). The truth is never simple. Journal of Symbolic Logic, 51(3), 663681.CrossRefGoogle Scholar
Burgess, J. (1988). Addendum to ‘The truth is never simple’. Journal of Symbolic Logic, 53(2), 390392.Google Scholar
Chemla, E. & Égré, P. (2019). Suszko’s problem: Mixed consequence and compositionality. The Review of Symbolic Logic, to appear.Google Scholar
Chemla, E., Égré, P., & Spector, B. (2017). Characterizing logical consequence in many-valued logic. Journal of Logic and Computation, 27(1), 21932226.Google Scholar
Chierchia, G. & McCconnell-Ginet, S. (2000). Meaning and Grammar: Introduction to Semantics (second edition). Cambridge, MA: MIT Press.Google Scholar
Cieśliński, C. (2007). Deflationism, conservativeness and maximality. Journal of Philosophical Logic, 36(6), 695705.CrossRefGoogle Scholar
Cobreros, P., Égré, P., Ripley, D., & van Rooij, R. (2012). Tolerant, classical, strict. Journal of Philosophical Logic, 41(2), 347385.CrossRefGoogle Scholar
Cobreros, P., Égré, P., Ripley, D., & van Rooij, R. (2013). Reaching transparent truth. Mind, 122(488), 841866.CrossRefGoogle Scholar
Cook, R. (2004). Pattern of paradox. The Journal of Symbolic Logic, 69(3), 767774.CrossRefGoogle Scholar
Cook, R. (2006). There are noncircular paradoxes (but Yablo’s isn’t one of them!). The Monist, 89(1), 118149.CrossRefGoogle Scholar
Cook, R. (2007). Embracing revenge: On the indefinite extensibility of language. In Beall, J., editor. Revenge of the Liar. Oxford: Oxford University Press, pp. 3152.Google Scholar
Cook, R. (2009). What is a truth value, and how many are there? Studia Logica, 92, 183201.CrossRefGoogle Scholar
Cook, R. (2014). The Yablo Paradox: An Essay on Circularity. Oxford: Oxford University Press.CrossRefGoogle Scholar
Cook, R. & Tourville, N. (2016). Embracing the technicalities: Expressive completeness and revenge. The Review of Symbolic Logic, 9(2), 325358.Google Scholar
Davidson, D. (1967). Truth and meaning. Synthese, 17, 304323.CrossRefGoogle Scholar
Davis, L. (1979). An alternate formulation of Kripke’s theory of truth. Journal of Philosophical Logic, 8(1), 289296.CrossRefGoogle Scholar
Diestel, R. (2010). Graph Theory (fourth edition). Berlin: Springer.CrossRefGoogle Scholar
Dyrkolbotn, S. & Walicki, M. (2014). Propositional discourse logic. Synthese, 191(5), 863899.CrossRefGoogle Scholar
Eldridge-Smith, P. (2015). Two paradoxes of satisfaction. Mind, 124(493), 85119.CrossRefGoogle Scholar
Field, H. (2002). Saving the truth schema from paradox. Journal of Philosophical Logic, 31(1), 127.CrossRefGoogle Scholar
Field, H. (2003). A revenge-immune solution to the semantic paradoxes. Journal of Philosophical Logic, 32(2), 139177.CrossRefGoogle Scholar
Field, H. (2007). Solving the paradoxes, escaping revenge. In Beall, J., editor. Revenge of the Liar. Oxford: Oxford University Press, pp. 53144.Google Scholar
Field, H. (2008). Saving Truth from Paradox. Oxford: Oxford University Press.CrossRefGoogle Scholar
Field, H. (2013). Naive truth and restricted quantification: Saving truth a whole lot better. The Review of Symbolic Logic, 7(1), 147191.CrossRefGoogle Scholar
Fine, K. (2017). Truthmaker semantics. In Hale, B., Wright, C., and Miller, A., editors. A Companion to the Philosophy of Language, Second Edition, Oxford: Wiley-Blackwell, pp. 556577.CrossRefGoogle Scholar
Fischer, M., Halbach, V., Kriener, J., & Stern, J. (2015). Axiomatizing semantic theories of truth? The Review of Symbolic Logic, 8(2), 257278.CrossRefGoogle Scholar
Friedman, H. & Sheard, M. (1987). An axiomatic approach to self-referential truth. Annals of Pure and Applied Logic, 33, 121.CrossRefGoogle Scholar
Gaifman, H. (1988). Operational pointer semantics: Solution to self-referential puzzles I. In Vardi, M., editor. Theoretical Aspects of Reasoning about Knowledge. Los Angeles: Morgan Kauffman, pp. 4359.Google Scholar
Gaifman, H. (1992). Pointers to truth. Journal of Philosophy, 89(5), 223261.CrossRefGoogle Scholar
Gaifman, H. (2000). Pointers to propositions. In Chapuis, A. and Gupta, A., editors. Circularity, Definition, and Truth. Indian Council of Philosophical Research.Google Scholar
Gottwald, S. (2001). A Treatise on Many-valued Logics. Studies in Logic and Computation. Baldock, Hertfordshire, England: Research Studies Press LTD.Google Scholar
Greenough, P. (2011). Truthmaker gaps and the no-no paradox. Philosophy and Phenomenological Research, 82(3), 547563.CrossRefGoogle Scholar
Gupta, A. (1982). Truth and paradox. Journal of Philosophical Logic, 11(1), 160.CrossRefGoogle Scholar
Gupta, A. & Belnap, N. (1993). The Revision Theory of Truth. Cambridge (MA): MIT Press.Google Scholar
Hájek, P., Paris, J., & Shepherdson, J. (2000). The liar paradox and fuzzy logic. Journal of Symbolic Logic, 65(1), 339346.CrossRefGoogle Scholar
Halbach, V. (2011). Axiomatic Theories of Truth. Cambridge: Cambrdige University Press.CrossRefGoogle Scholar
Halbach, V. & Horsten, L. (2006). Axiomatizing Kripke’s theory of truth. Journal of Symbolic Logic, 71(2), 677712.CrossRefGoogle Scholar
Halbach, V., Leitgeb, H., & Welch, P. (2003). Possible-worlds semantics for modal notions conceived as predicates. Journal of Philosophical Logic, 32(2), 179223.CrossRefGoogle Scholar
Halbach, V. & Visser, A. (2014a). Self-reference in arithmetic I. The Review of Symbolic Logic, 7(4), 671691.CrossRefGoogle Scholar
Halbach, V. & Visser, A. (2014b). Self-reference in arithmetic II. The Review of Symbolic Logic, 7(4), 692712.CrossRefGoogle Scholar
Halbach, V. & Zhang, S. (2017). Yablo without Gödel. Analysis, 77(1), 5359.Google Scholar
Hansen, C. (2015). Supervaluation on trees for Kripke’s theory of truth. The Review of Symbolic Logic, 8(1), 4674.CrossRefGoogle Scholar
Hazen, A. (1981). Davis’s formulation of Kripke’s theory of truth: A correction. Journal of Philosophical Logic, 10(3), 309311.CrossRefGoogle Scholar
Herzberger, H. (1982a). Naive semantics and the liar paradox. Journal of Philosophy, 79(9), 479497.CrossRefGoogle Scholar
Herzberger, H. (1982b). Notes on naive semantics. Journal of Philosophical Logic, 11(1), 61102.CrossRefGoogle Scholar
Horsten, L. (2009). Levity. Mind, 118(471), 555581.CrossRefGoogle Scholar
Horsten, L. (2012). The Tarskian Turn. Deflationism and Axiomatic Truth. Cambridge (MA): MIT Press.Google Scholar
Ketland, J. (2003). Can a many-valued language functionally represent its own semantics? Analysis, 63(4), 292297.CrossRefGoogle Scholar
Ketland, J. (2004). Bueno and Colyvan on Yablo’s paradox. Analysis, 64(2), 165172.CrossRefGoogle Scholar
Ketland, J. (2005). Yablo’s paradox and ω-inconsistency. Synthese, 145(3), 295302.CrossRefGoogle Scholar
Kleene, S. C. (1952). Introduction to Metamathematics. New York: van Nostrand.Google Scholar
Kremer, P. (2009). Comparing fixed-point and revision theories of truth. Journal of Philosophical Logic, 38(4), 363403.CrossRefGoogle Scholar
Kripke, S. (1975). Outline of a theory of truth. Journal of Philosophy, 72(19), 690716.CrossRefGoogle Scholar
Leitgeb, H. (2002). What is a self-referential sentence? Critical remarks on the alleged (non)circularity of Yablo’s paradox. Logique et Analyse, 177–178, 314.Google Scholar
Leitgeb, H. (2005). What truth depends on. Journal of Philosophical Logic, 34(2), 155192.CrossRefGoogle Scholar
Leitgeb, H. (2007). On the metatheory of Field’s ‘Solving the paradoxes, escaping revenge’. In Beall, J., editor. Revenge of the Liar. Oxford: Oxford University Press, pp. 159183.Google Scholar
Maudlin, T. (2004). Truth and Paradox: Solving the Riddles. New York: Oxford University Press.CrossRefGoogle Scholar
Maudlin, T. (2007). Reducing revenge to discomfort. In Beall, J., editor. Revenge of the Liar. Oxford: Oxford University Press, pp. 184196.Google Scholar
McCarthy, T. (1988). Ungroundedness in classical languages. Journal of Philosophical Logic, 17(1), 6174.CrossRefGoogle Scholar
McGee, V. (1985). How truthlike can a predicate be? A negative result. Journal of Philosophical Logic, 14(4), 399410.CrossRefGoogle Scholar
McGee, V. (1991). Truth, Vagueness, and Paradox. Indianapolis: Hackett Publishing Company.Google Scholar
Montague, R. (1974). Formal Philosophy. Selected Papers of Richard Montague. New Haven: Yale University Press.Google Scholar
Mortensen, C. & Priest, G. (1981). The truth teller paradox. Logique et Analyse, 95–96, 381388.Google Scholar
Moschovakis, Y. (1974). Elementary Induction on Abstract Structures. Amsterdam, London and New York: North-Holland and Elsevier.Google Scholar
Murzi, J. & Rossi, L. (2019). Generalised revenge. Australasian Journal of Philosophy, to appear.Google Scholar
Nicolai, C. & Rossi, L. (2018). Principles for object-linguistic consequence: From logical to irreflexive. Journal of Philosophical Logic, 47(3), 549577.CrossRefGoogle Scholar
Priest, G. (1979). The logic of paradox. Journal of Philosophical Logic, 8(1), 219241.CrossRefGoogle Scholar
Priest, G. (1997). Yablo’s paradox. Analysis, 57(4), 236242.CrossRefGoogle Scholar
Priest, G. (2006). In Contradiction (expanded edition). Oxford: Oxford University Press.CrossRefGoogle Scholar
Priest, G. (2007). Revenge, Field, and ZF. In Beall, J., editor. Revenge of the Liar. Oxford: Oxford University Press, pp. 225233.Google Scholar
Rabern, L., Rabern, B., & Macauley, M. (2013). Dangerous reference graphs and semantic paradoxes. Journal of Philosophical Logic, 42(5), 727765.CrossRefGoogle Scholar
Restall, G. (1992). Arithmetic and truth in Lukasiewicz’s infinitely valued logic. Logique et Analyse, 139–140, 303312.Google Scholar
Restall, G. (2007). Curry’s revenge: The costs of nonclassical solutions to the paradoxes of self-reference. In Beall, J., editor. Revenge of the Liar. Oxford: Oxford University Press, pp. 262271.Google Scholar
Rogers, H. (1987). Theory of Recursive Functions and Effective Computability (second edition). Cambridge (MA) and London: MIT Press.Google Scholar
Rossi, L. (2016). Adding a conditional to Kripke’s theory of trugh. Journal of Philosophical Logic, 45(5), 485529.CrossRefGoogle Scholar
Rossi, L. (2019). Model-theoretic semantics and revenge paradoxes. Philosophical Studies, to appear.CrossRefGoogle ScholarPubMed
Scharp, K. (2007). Aletheic vengeance. In Beall, J., editor. Revenge of the Liar. Oxford: Oxford University Press, pp. 272319.Google Scholar
Scharp, K. (2013). Replacing Truth. Oxford: Oxford University Press.CrossRefGoogle Scholar
Schlenker, P. (2007). The elimination of self-reference: Generalized Yablo-series and the theory of truth. Journal of Philosophical Logic, 36(3), 251307.CrossRefGoogle Scholar
Schlenker, P. (2010). Super-liars. The Review of Symbolic Logic, 3(3), 374414.CrossRefGoogle Scholar
Shapiro, L. (2011). Expressibility and the liar’s revenge. Australasian Journal of Philosophy, 89(2), 118.CrossRefGoogle Scholar
Simmons, K. (2007). Revenge and context. In Beall, J., editor. Revenge of the Liar. Oxford: Oxford University Press, pp. 345367.Google Scholar
Smith, J. (1984). A simple solution to Mortensen and Priest’s truth teller paradox. Logique et Analyse, 27(106), 217220.Google Scholar
Sorensen, R. (2001). Vagueness and Contradiction. Oxford: Oxford University Press.Google Scholar
Urquhart, A. (2001). Basic many-valued logic. In Gabbay, D. and Guenthner, F., editors. Handbook of Philosophical Logic, Second Edition, Vol. 2. Dordrecht: Kluwer Academic Publishers, pp. 249295.CrossRefGoogle Scholar
Visser, A. (1984). Four valued semantics and the liar. Journal of Philosophical Logic, 13(2), 181212.CrossRefGoogle Scholar
Visser, A. (1989). Semantics and the liar paradox. In Gabbay, D. and Günthner, F., editors. Handbook of Philosophical Logic, Vol. 4. Dordrecht: Reidel, pp. 617706.CrossRefGoogle Scholar
Walicki, M. (2009). Reference, paradoxes and truth. Synthese, 171, 195226.CrossRefGoogle Scholar
Walicki, M. (2017). Resolving infinitary paradoxes. Journal of Symbolic Logic, 82(2), 709723.CrossRefGoogle Scholar
Wen, L. (2001). Semantic paradoxes as equations. The Mathematical Intelligencer, 23(1), 4348.CrossRefGoogle Scholar
Yablo, S. (1982). Grounding, dependence, and paradox. Journal of Philosophical Logic, 11, 117137.CrossRefGoogle Scholar
Yablo, S. (1985). Truth and reflection. Journal of Philosophical Logic, 14(3), 297349.CrossRefGoogle Scholar
Yablo, S. (1993). Paradox without self-reference. Analysis, 53(4), 251252.CrossRefGoogle Scholar
Yablo, S. (2006). Circularity and paradox. In Bolander, T., Hendricks, V., and Pedersen, S., editors. Self-Reference. Stanford: CSLI Publications, pp. 139157.Google Scholar
Yi, B. (1999). Descending chains and the contextualist approach to paradoxes. Notre Dame Journal of Formal Logic, 40(4), 554567.CrossRefGoogle Scholar
Zardini, E. (2011). Truth without contra(di)ction. Review of Symbolic Logic, 4(4), 498535.CrossRefGoogle Scholar
3
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A UNIFIED THEORY OF TRUTH AND PARADOX
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

A UNIFIED THEORY OF TRUTH AND PARADOX
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

A UNIFIED THEORY OF TRUTH AND PARADOX
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *