Skip to main content
×
Home

AUTOMATED CORRESPONDENCE ANALYSIS FOR THE BINARY EXTENSIONS OF THE LOGIC OF PARADOX

  • YAROSLAV PETRUKHIN (a1) and VASILY SHANGIN (a1)
Abstract
Abstract

B. Kooi and A. Tamminga present a correspondence analysis for extensions of G. Priest’s logic of paradox. Each unary or binary extension is characterizable by a special operator and analyzable via a sound and complete natural deduction system. The present paper develops a sound and complete proof searching technique for the binary extensions of the logic of paradox.

Copyright
Corresponding author
* FACULTY OF PHILOSOPHY DEPARTMENT OF LOGIC LOMONOSOV MOSCOW STATE UNIVERSITY LOMONOSOVSKY PROSPEKT, 27-4, GSP-1 MOSCOW 119991, RUSSIA E-mail: yaroslav.petrukhin@mail.ru
FACULTY OF PHILOSOPHY DEPARTMENT OF LOGIC LOMONOSOV MOSCOW STATE UNIVERSITY LOMONOSOVSKY PROSPEKT, 27-4, GSP-1 MOSCOW 119991, RUSSIA E-mail: shangin@philos.msu.ru
References
Hide All
Anderson A. R. & Belnap N. D. (1975). Entailment. The Logic of Relevance and Necessity, Vol. 1. Princeton, NJ: Princeton University Press.
Anderson A. R. & Belnap N. D. (1992). Entailment. The Logic of Relevance and Necessity, Vol. 2. Princeton, NJ: Princeton University Press.
Asenjo F. G. (1954). La Idea de un Calculo de Antinomias. Seminario Matematico. Universidad Nacional de La Plata.
Asenjo F. G. (1966). A calculus of antinomies. Notre Dame Journal of Formal Logic, 7(1), 103105.
Asenjo F. G. & Tamburino J. (1975). Logic of antinomies. Notre Dame Journal of Formal Logic, 16(1), 1744.
Avron A. (1991). Natural 3-valued logics—Characterization and proof theory. The Journal of Symbolic Logic, 56(1), 276294.
Avron A. (1986). On an implicational connective of RM. Notre Dame Journal of Formal Logic, 27(2), 201209.
Batens D. (1980). Paraconsistent extensional propositional logics. Logique et Analyse, 23(90–91), 195234.
Batens D. (1989). Dynamic dialectical logic. In Priest G., Routley R., and Norman J., editors. Paraconsistent Logic Essays on the Inconsistent. Munich: Philosophia Verlag, pp. 187217.
Bolotov A., Basukoski A., Grigoriev O., & Shangin V. (2006). Natural deduction calculus for linear-time temporal logic. Lecture Notes in Computer Science, 4160, 5668.
Bolotov A., Bocharov V., Gorchakov A., & Shangin V. (2005). Automated first order natural deduction. In Prasad B., editor. Proceedings of the 2nd Indian International Conference on Artificial Intelligence (IICAI-2005). Tumkur: IICAI, pp. 12921311.
Bolotov A. & Shangin V. (2012). Natural deduction system in paraconsistent setting: Proof search for PCont. Journal of Intelligent Systems, 21(1), 124.
Carnielli W. A., Marcos J., & Amo S. (2000). Formal inconsistency and evolutionary databases. Logic and Logical Philosophy, 8, 115152.
Copi I. M., Cohen C., & McMahon K. (2011). Introduction to Logic (fourteenth edition). New York: Routledge.
D’Agostino M. (2005). Classical natural deduction. In Artemov S., Barringer H., d’Avila Garcez A., Lamb L. C., and Woods J., editors. We Will Show Them! Essays in Honour of Dov Gabbay, Vol. 1. London: College Publications, pp. 429468.
Da Costa N. C. A. & Alves E. H. (1981). Relations between paraconsistent logic and many-valued logic. Bulletin of the Section of Logic, 10(4), 185190.
D’Ottaviano I. M. L. & da Costa N. C. A. (1970). Sur un probléme de Jaśkowski. Comptes Rendus de l’Académie des Sciences de Paris, 270, 13491353.
Epstein R. L. (1990). The Semantic Foundations of Logic. Vol. 1: Propositional Logic. Dordrecht: Kluwer.
Epstein R. L. & D’Ottaviano I. M. L. (2000). Paraconsistent logic: J3. In Epstein R. L., editor. Propositional Logics, Second Edition, Chapter 9. Belmont, CA: Wadsworth Publishing Company.
Gabbay D. M. (1994). What is a logical system? In Gabbay D. M., editor. What is a Logical System? Oxford: Clarendon Press, pp. 179216.
Gödel K. (1932). Zum intuitionistischen Aussgenkalkül. Anzeiger der Akademie der Wissenschaften in Wien, 69, 6566. English translation: On the intuitionistic propositional calculus. In Gödel K., editor. Collected Works, Vol. 1. New York, 1986, pp. 300301.
Heyting A. (1930). Die Formalen Regeln der intuitionistischen Logik. Sitzungsberichte der Preussischen Academie der Wissenschaften zu Berlin, Berlin, 42–46. English translation: The Formal Rules of Intuitionistic Logic. In Mancosu P., editor. From Brouwer to Hilbert. The Debate on the Foundations of Mathematics in the 1920s. Oxford, 1998, pp. 311328.
Jaśkowski S. (1936). Recherches sur le système de la logique intuitioniste. Actes du Congrès International de Philosophie Scientifique, 6, 5861. English translation: Investigations into the system of intuitionistic logic. Studia Logica, 1975, 34, 117120.
Jaśkowski S. (1948). Rachunek zdań dla systemów dedukcyjnych sprzecznych. Studia Societatis Scientiarum Torunensis, Sectio A, Vol. I, No. 5, Toruń, 57–77. English translation: A propositional calculus for inconsistent deductive systems. Logic and Logical Philosophy, 7, 1999, 3556.
Karpenko A. & Tomova N. (2017). Bochvar’s three-valued logic and literal paralogics: Their lattice and functional equivalence. Logic and Logical Philosophy, 26(2), 207235.
Kleene S. C. (1938). On a notation for ordinal numbers. The Journal of Symbolic Logic, 3(4), 150155.
Kleene S. C. (1952). Introduction to Metamathematics. New York & Toronto: D. van Nostrand Company, Inc.
Kooi B. & Tamminga A. (2012). Completeness via correspondence for extensions of the logic of paradox. The Review of Symbolic Logic, 5(4), 720730.
Łukasiewicz J. & Tarski A. (1930). Untersuchungen über den Aussagenkalkul. Comptes Rendus des Séances de la Société des Sciences et des Letters de Varsovie, 3(23), 121. English translation: Investigations into the sentential calculus. In Łukasiewicz J., editor. Selected Works. Amsterdam & Warszawa: North-Holland & PWN, 1970, pp. 131152.
Marcos J. (2005). On a problem of da Costa. In Sica G., editor. Essays of the Foundations of Mathematics and Logic. Monza, Italy: Polimetrica International Scientific Publisher, pp. 5369.
Martin J. N. (1975). A syntactic characterization of Kleene’s strong connectives with two designated values. Mathematical Logic Quarterly, 21(1), 181184.
Mortenson C. (1989). Paraconsistency and C1 . In Priest G., Routley R., and Norman J., editors. Paraconsistent Logic Essays on the Inconsistent. Munich: Philosophia Verlag, pp. 289305.
Petrukhin Y. (2016). Correspondence analysis for first degree entailment. Logical Investigations, 22(1), 108124.
Popov V. M. (1999). On the logics related to Arruda’s system V1. Logic and Logical Philosophy, 7, 8790.
Prawitz D. (1965). Natural Deduction. Stockholm: Almqvist & Wiksell.
Priest G. (1979). The logic of paradox. Journal of Philosophical Logic, 8(1), 219241.
Priest G. (1984). Logic of paradox revisited. Journal of Philosophical Logic, 13(2), 153179.
Priest G. (2002). Paraconsistent logic. In Gabbay D. M. and Guenthner F., editors. Handbook of Philosophical Logic, Second Edition, Vol. 6. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 287393.
Resher N. (1969). Many-Valued Logic. New York: McGraw Hill.
Roy T. (2006). Natural derivations for priest, an introduction to non-classical logic. Australasian Journal of Logic, 5, 47192.
Rozonoer L. (1983a). On finding contradictions in formal theories. I. Automatica and Telemekhanica, 6, 113124 (in Russian).
Rozonoer L. (1983b). On finding contradictions in formal theories. II. Automatica and Telemekhanica, 7, 97104 (in Russian).
Sahlqvist H. (1975). Completeness and correspondence in the first and second order semantics for modal logic. In Kanger S., editor. Proceeding of the Third Scandinavian Logic Symposium. Amsterdam: North-Holland Publishing Company, pp. 110143.
Sette A. (1973). On propositional calculus P1 . Mathematica Japonica, 18, 173180.
Sieg W. & Pfenning F. (guest editors) (1998). Note by the guest editors. Studia Logia, 60(1), 1.
Sobociński B. (1952). Axiomatization of a partial system of three-valued calculus of propositions. The Journal of Computing Systems, 1, 2355.
Tamminga A. (2014). Correspondence analysis for strong three-valued logic. Logical Investigations, 20, 255268.
Tamminga A. (2016). Sequent calculi for four-valued logic. Proceedings of the 7th International Conference “Teaching Logic and Prospects of its Development”, Taras Shevchenko National University of Kyiv (May 12–15, 2016), pp. 34.
Thomas N. (2013). LP: Extending LP with a strong conditional. Mathematics. Unpublished manuscript,https://arxiv.org/abs/1304.6467.
Tomova N. E. (2012). A lattice of implicative extensions of regular Kleene’s logics. Reports on Mathematical Logic, 47, 173182.
Tomova N. E. (2015a). Erratum to: Natural implication and modus ponens principle. Logical Investigations, 21(2), 186187.
Tomova N. E. (2015b). Natural implication and modus ponens principle. Logical Investigations, 21(1), 138143.
van Benthem J. (1976). Modal correspondence theory. Ph.D. Thesis, Universiteit van Amsterdam, Amsterdam.
van Benthem J. (2001). Correspondence theory. In Gabbay D. M. and Guenthner F., editors. Handbook of Philosophical Logic, Second Edition, Vol. 3. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 325408.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Review of Symbolic Logic
  • ISSN: 1755-0203
  • EISSN: 1755-0211
  • URL: /core/journals/review-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 15 *
Loading metrics...

Abstract views

Total abstract views: 193 *
Loading metrics...

* Views captured on Cambridge Core between 3rd July 2017 - 20th November 2017. This data will be updated every 24 hours.