Skip to main content
×
×
Home

BELIEF REVISION IN NON-CLASSICAL LOGICS

  • DOV GABBAY (a1), ODINALDO RODRIGUES (a1) and ALESSANDRA RUSSO (a2)
Abstract

In this article, we propose a belief revision approach for families of (non-classical) logics whose semantics are first-order axiomatisable. Given any such (non-classical) logic , the approach enables the definition of belief revision operators for , in terms of a belief revision operation satisfying the postulates for revision theory proposed by Alchourrón, Gärdenfors and Makinson (AGM revision, Alchourrón et al. (1985)). The approach is illustrated by considering the modal logic K, Belnap's four-valued logic, and Łukasiewicz's many-valued logic. In addition, we present a general methodology to translate algebraic logics into classical logic. For the examples provided, we analyse in what circumstances the properties of the AGM revision are preserved and discuss the advantages of the approach from both theoretical and practical viewpoints.

Copyright
Corresponding author
*DEPARTMENT OF COMPUTER SCIENCE, KING'S COLLEGE LONDON LONDON WC2R 2LS, UK E-mail:dov.gabbay@kcl.ac.uk
DEPARTMENT OF COMPUTER SCIENCE, KING'S COLLEGE LONDON LONDON WC2R 2LS, UK E-mail:odinaldo.rodrigues@kcl.ac.uk
DEPARTMENT OF COMPUTING, IMPERIAL COLLEGE, LONDON SW7 2BZ, UK E-mail:ar3@doc.ic.ac.uk
References
Hide All
Alchourrón, C. E., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change: partial meet contraction and revision functions. Journal of Symbolic Logic, 50(2), 510530.
Anderson, A. R., Belnap, N. D., & Dunn, J. M. (1992). A Useful Four-Valued Logic: How a Computer Should Think[Section 81 of Anderson, A.R., and Belnap, N.D., Jr., and Dunn, J.M., et al. Entailment, vol. II, pp. 506–541]. Princeton, NJ: Princeton University Press.
Belnap, N. (1977a). How a computer should think. In Ryle, G., editor, Contemporary Aspects of Philosophy. Stocksfield: Oriel Press, pp. 3056.
Belnap, N. (1977b). A useful four-valued logic. In Dunn, J. M. and Epstein, G., editors, Modern Uses of Multiple-Valued Logic. Stocksfield: Reidel, pp. 837.
Broda, K., Russo, A., & Gabbay, D. (2000). Discovering world with fuzzy logic: perspectives and approaches to the formalisation of human-consistent logical systems. In Novak, V., and Perf, I., editors, A Unified Compilation Style Labelled Deductive Systems for Modal, Substructural and Fuzzy Logic. Berlin, Germany: Springer-Verlag, pp. 495547.
Chellas, B. F. (1980). Modal Logic: an Introduction. Cambridge, UK: Cambridge University Press.
Darwiche, A., & Pearl, J. (1996). On the logic of iterated belief revision. Technical Report R-202. Cognitive Science Laboratory, Computer Science Department, University of California, Los Angeles, CA.
Darwiche, A., & Pearl, J. (1997). On the logic of iterated belief revision. Artificial Intelligence, 89, 129.
Fuhrmann, A. (1991). Theory contraction through base contraction. Journal of Philosophical Logic, 20(2), 175203. DOI 10.1007/BF00284974.
Gabbay, D. M., & Maksimova, L. (2005). Interpolation and Definability. Modal and Intuitionistic Logics, vol. 1. Oxford, UK: Oxford Science Publications. ISBN 0-19-851174-4.
Gabbay, D. M., Pigozzi, G., & Rodrigues, O. (2006). Belief revision, belief merging and voting. In Bonanno, G., van der Hoek, W., and Wooldridge, M., editors, Proceedings of the Seventh Conference on Logic and the Foundations of Games and Decision Theory (LOFT06). Liverpool, UK: University of Liverpool, pp. 7178.
Gabbay, D., Rodrigues, O., & Russo, A. (2000). Information, uncertainty, fusion. In Yager, R. R., Zadeh, L. A., and Bouchon-Meunier, B., editors, Revision by Translation. Norwell, MA: Kluwer Academic Publishers, pp. 331. ISBN: 0-7923-8590-X.
Gärdenfors, P. (1988). Knowledge in Flux: Modeling the Dynamics of Epistemic states. A Bradford Book. Cambridge, MA: The MIT Press.
Katsuno, H., & Mendelzon, A. O. (1991). Propositional knowledge base revision and minimal change. Artificial Intelligence, 52, 263294.
Martins, J. P., & Shapiro, S. C. (1988). A model for belief revision. Artificial Intelligence, 35(1), 2579.
Ohlbach, H. J. (1991). Semantics-based translations methods for modal logics. Journal of Logic and Computation, 1(5), 691746.
Priest, G. (2001). Paraconsistent belief revision. Theoria, 67, 214228.
Restall, G., & Slaney, J. (1995). Realistic belief revision. In De Glas, M., and Pawlak, Z., editors, Wocfai 95: Proceedings of the Second World Conference on the Fundamentals of Artificial Intelligence, Angkor, July 1995. Paris, France: Angkor, pp. 67378. ISBN 2-87892-009-0.
Shapiro, S. C. (1992). Relevance logic in computer science[Section 83 of Anderson, A.R., and Belnap, N.D., Jr., and Dunn, J.M., et al. Entailment, vol. II, pp. 553–563]. Princeton, NJ: Princeton University Press.
Tanaka, K. (1997). What Does Paraconsistency Do? Prague, Czech Republic: Filosofia. The Case of Belief Revision. The Logica Yearbook.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Review of Symbolic Logic
  • ISSN: 1755-0203
  • EISSN: 1755-0211
  • URL: /core/journals/review-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed