Skip to main content


  • EDWIN MARES (a1)

This paper presents a probabilist paraconsistent theory of belief revision. This theory is based on a very general theory of probability, that fits with a wide range of classical and nonclassical logics. The theory incorporates a version of Jeffrey conditionalisation as its method of updating. A Dutch book argument is given, and the theory is applied to the problem of choosing a logical system.

Corresponding author
Hide All
Allwein, G., & Dunn, J. M. (1993). Kripke models for linear logic. The Journal of Symbolic Logic, 58, 514545.
Belnap, N. (1977). A useful 4-valued logic. In Dunn, J. M., and Epstein, G., editors. Modern Uses of Many-Valued Logic, Dordrecht: Reidel, pp. 837.
Brady, R. (2006). Universal Logic. Stanford: CSLI.
Buchak, L. (2013). Risk and Rationality. Oxford: Oxford University Press.
Dunn, J. M. (1968). Natural versus formal languages. In American Philosophical Association meeting presented at the joint APA-ASL symposium, New York, Dec. 27, unpublished.
Dunn, J. M. (1976). Intuitive semantics for first-degree entailments and “coupled trees”. Philosophical Studies, 29, 149168.
Fine, K. (1974). Models for entailment. Journal of Philosophical Logic, 3, 347372.
Girard, J-Y. (1998). Light linear logic. Information and Computation, 14, 175204.
Goldblatt, R. (1993). The Mathematics of Modality. Stanford: CSLI.
Goldblatt, R. (2011). Quantifiers, Propositions, and Identity: Admissible Semantics for Quantified Modal and Substructural Logics. Cambridge: Cambridge University Press.
Kyburg, H. (1970). Conjunctivitis. In Swain, M., editor. Induction, Acceptance, and Rational Belief, Dordrecht: Reidel, pp. 5582.
Mares, E. (1997). Paraconsistent probability theory and paraconsistent bayesianism. Logique et Analyse, 160, 375384.
Mares, E. (2000). Even dialetheists should hate contradictions. Australasian Journal of Philosophy, 78, 503–316.
Mares, E. (2002). A paraconsistent theory of belief revision. Erkenntnis, 56, 229246.
Mares, E. (2004). Relevant Logic: A Philosophical Interpretation. Cambridge: Cambridge University Press.
Mares, E. (2014). Liars, lotteries, and prefaces: Two paraconsistent accounts of theory change. In Hansson, S. O., editor. David Makinson on Classical Methods for Non-Classical Problems, Dordrecht: Springer Verlag, pp. 119141.
Mares, E., & Goldblatt, R. (2006). An alternative semantics for quantified relevant logic. The Journal of Symbolic Logic, 71, 163187.
Ono, H. (1993). Semantics for substructural logics. In Došen, K., and Schröder-Heister, P., editors. Substructural Logic, Oxford: Oxford University Press, pp. 259291.
Paoli, F. (2002). Substructural Logics: A Primer. Dordrecht: Springer.
Paoli, F., & Restall, G. (2005). The geometry of non-distributive logics. The Journal of Symbolic Logic, 70, 11081126.
Paris, J. B. (2001). A note on the Dutch book method. In Proceedings of the second International Symposium on imprecise Probabilities and their Applications, ISIPTA, Ithaca, NY: Shaker, pp. 301306.
Popper, K. (1959). Logic of Scientific Discovery. London: Hutchinson.
Priest, G. (2006). In Contradiction (second edition). Oxford: Oxford University Press.
Priest, G. (2008). An Introduction to Non-classical Logic: From If to Is. Cambridge: Cambridge University Press.
Ramsey, F. P. (1931). Foundations of Mathematics and Other Logical Essays. London: K. Paul, Trench, Trubner and Company.
Rényi, A. (1970). Foundations of Probability. San Francisco: Holden-Day.
Routley, R., & Meyer, R. K. (1972a). Semantics for entailment II. Journal of Philosophical Logic, 1, 5373.
Routley, R., & Meyer, R. K. (1972b). Semantics for entailment III. Journal of Philosophical Logic, 1, 192208.
Routley, R., & Meyer, R. K. (1973). Semantics for entailment. In Leblanc, H., editor. Truth, Syntax, and Modality, Amsterdam: North Holland, pp. 199243.
Smith, N. J. J. (forthcoming). Vagueness, uncertainty, and degrees of belief – two kinds of indeterminacy, one kind of credence. Erkenntnis, Available from Springer Link: DOI: 10.1007/s10670-013-9588-3.
Weatherson, B. (2003). From classical to constructive probability. Notre Dame Journal of Formal Logic, 44, 111123.
Williams, J. R. G. (2012). Generalized probabilism: Dutch books and accuracy domination. Journal of Philosophical Logic, 41, 811840.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Review of Symbolic Logic
  • ISSN: 1755-0203
  • EISSN: 1755-0211
  • URL: /core/journals/review-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 34 *
Loading metrics...

Abstract views

Total abstract views: 254 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th March 2018. This data will be updated every 24 hours.