Skip to main content
×
×
Home

CAN MODALITIES SAVE NAIVE SET THEORY?

  • PETER FRITZ (a1), HARVEY LEDERMAN (a2), TIANKAI LIU (a3) and DANA SCOTT (a4)
Abstract

To the memory of Prof. Grigori Mints, Stanford University Born: June 7, 1939, St. Petersburg, Russia Died: May 29, 2014, Palo Alto, California

Copyright
Corresponding author
*IFIKK UNIVERSITY OF OSLO PO BOX 1020 BLINDERN 0315 OSLO, NORWAY E-mail: peter.fritz@ifikk.uio.no
DEPARTMENT OF PHILOSOPHY PRINCETON UNIVERSITY PRINCETON, NJ 08544, USA E-mail: harvey.lederman@princeton.edu
DEPARTMENT OF MATHEMATICS UNIVERSITY OF UTAH SALT LAKE CITY, UT 84112, USA E-mail: tliu@math.utah.edu
§ VISITING SCHOLAR UNIVERSITY OF CALIFORNIA, BERKELEY BERKELEY, CA 94720, USA E-mail: dana.scott@cs.cmu.edu
References
Hide All
Aczel P. & Feferman S. (1980). Consistency of the unrestricted abstraction principle using an intensional equivalence operator. In Seldin J. P. and Hindley J. R., editors. To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. New York: Academic Press, pp. 6798.
Bacon A. (2015). Can the classical logician avoid the revenge paradoxes? Philosophical Review, 124(3), 299352.
Balaguer M. (2008). Fictionalism in the philosophy of mathematics. In Zalta E. N., editor. Stanford Encyclopedia of Philosophy. Available at https://plato.stanford.edu/archives/sum2015/entries/fictionalism-mathematics/.
Blass A. (1990). Infinitary combinatorics and modal logic. The Journal of Symbolic Logic, 55(2), 761778.
Boolos G. (1995). The Logic of Provability. Cambridge: Cambridge University Press.
Cantini A. (2009). Paradoxes, self-reference and truth in the 20th century. In Woods J. and Gabbay D. M. editors. Handbook of the History of Logic, Volume 5: Logic from Russell to Church. Amsterdam: Elsevier, pp. 8751013.
Feferman S. (1984). Toward useful type-free theories, I. The Journal of Symbolic Logic, 49, 75111.
Field H. (1980). Science Without Numbers. Princeton, NJ: Princeton University Press.
Field H. (1989). Realism, Mathematics & Modality. Oxford: Basil Blackwell.
Field H., Lederman H., & Øgaard T. F. (2017). Prospects for a naive theory of classes. Notre Dame Journal of Formal Logic, 58(4), 461506.
Fine K. (1978). Model theory for modal logic – Part II. The elimination of de re modality. Journal of Philosophical Logic, 7, 277306.
Fine K. (1981). First-order modal theories I—sets. Noûs, 15, 177205.
Fitch F. B. (1942). A basic logic. The Journal of Symbolic Logic, 7(3), 105114.
Fitch F. B. (1948). An extension of basic logic. The Journal of Symbolic Logic, 13(2), 95106.
Fitch F. B. (1963). The system CΔ of combinatory logic. The Journal of Symbolic Logic, 28(1), 8797.
Fitch F. B. (1966). A consistent modal set theory (Abstract). The Journal of Symbolic Logic, 31, 701.
Fitch F. B. (1967a). A complete and consistent modal set theory. The Journal of Symbolic Logic, 32, 93103.
Fitch F. B. (1967b). A theory of logical essences. The Monist, 51, 104109.
Fitch F. B. (1970). Correction to a paper on modal set theory. The Journal of Symbolic Logic, 35, 242.
Fitting M. (2003). Intensional logic—beyond first order. In Hendricks V. F. and Malinowski J., editors. Trends in Logic. Dordrecht: Springer, pp. 87108.
Forster T. E. (1995). Set Theory with a Universal Set (second edition). Oxford: Clarendon Press.
Fritz P., & Goodman J. (2016). Higher-order contingentism, part 1: Closure and generation. Journal of Philosophical Logic, 45(6), 645695.
Gallin D. (1975). Intensional and Higher-Order Modal Logic. Amsterdam: North-Holland.
Gilmore P. C. (1967). The consistency of a positive set theory. Technical Report RC-1754, IBM Research Report.
Goodman N. (1990). Topological models of epistemic set theory. Annals of Pure and Applied Logic, 46, 147167.
Hamkins J. D. (2003). A simple maximality principle. The Journal of Symbolic Logic, 68(2), 527550.
Hamkins J. D. & Löwe B. (2008). The modal logic of forcing. Transactions of the American Mathematical Society, 360(4), 17931817.
Hamkins J. D. & Woodin W H. (2005). The necessary maximality principle for ccc forcing is equiconsistent with a weakly compact cardinal. Mathematical Logic Quarterly, 51(5), 493498.
Hellman G. (1989). Mathematics Without Numbers: Towards a Modal-Structural Interpretation. Oxford: Oxford University Press.
Hughes G. E. & Cresswell M. J. (1996). A New Introduction to Modal Logic. London: Routledge.
Kaye R. (1993). Review of Forster, T. E., set theory with a universal set: Exploring an untyped universe. Notre Dame Journal of Formal Logic, 34, 302309.
Krajíček J. (1987). A possible modal formulation of comprehension scheme. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 33, 461480.
Krajíček J. (1988). Some results and problems in the modal set theory MST. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 34, 123134.
Kripke S. A. (1959). A completeness theorem in modal logic. The Journal of Symbolic Logic, 24, 114.
Kripke S. A. (1975). Outline of a theory of truth. Journal of Philosophy, 72(19), 690716.
Linnebo Ø. (2010). Pluralities and sets. The Journal of Philosophy, 107(3), 144164.
Linnebo Ø. (2013). The potential hierarchy of sets. The Review of Symbolic Logic, 6(2), 205228.
Parsons C. (1983). Sets and modality. Mathematics in Philosophy. Ithaca: Cornell University Press, pp. 298341.
Rosen G. (2001). Nominalism, naturalism, epistemic relativism. Noûs, 35(s15), 6991.
Rundle B. (1969). Review of Frederic B. Fitch, “A theory of logical essences” and “A complete and consistent modal set theory”. The Journal of Symbolic Logic, 34, 125.
Scott D. (2010). A Boolean-Valued Modal Set Theory. Unpublished Oxford Lectures. Available at: www.homepages.inf.ed.ac.uk/als/ScottInScotland/ScottLect3.pdf.
Scroggs S. J. (1951). Extensions of the Lewis system S5. The Journal of Symbolic Logic, 16(2), 112120.
Shapiro S. (editor) (1985). Intensional Mathematics. Amsterdam: North-Holland.
Smullyan R. & Fitting M. (1996). Set Theory and the Continuum Problem. Oxford: Oxford University Press.
Solovay R. M. (1976). Provability interpretations of modal logic. Israel Journal of Mathematics, 25(3–4), 287304.
Studd J. (2013). The iterative conception of set. A (bi-)modal axiomatisation. Journal of Philosophical Logic, 42(5), 697725.
Williamson T. (2013). Modal Logic as Metaphysics. Oxford: Oxford University Press.
Yablo S. (2001). Go figure: A path through fictionalism. Midwest Studies in Philosophy, 25(1), 72102.
Zalta E. N. (1988). Intensional Logic and the Metaphysics of Intentionality. Cambridge, MA: MIT Press.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Review of Symbolic Logic
  • ISSN: 1755-0203
  • EISSN: 1755-0211
  • URL: /core/journals/review-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 28 *
Loading metrics...

Abstract views

Total abstract views: 122 *
Loading metrics...

* Views captured on Cambridge Core between 21st December 2017 - 21st January 2018. This data will be updated every 24 hours.