Awodey S. (2008). A brief introduction to algebraic set theory. Bulletin of Symbolic Logic, 14, 281–298.
Awodey S. (2012). Type theory and homotopy. In Dybjer P., et al. ., editors. Epistemology versus Ontology: Essays on the Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf. New York, NY: Springer. .
Awodey S., Butz C., Simpson A., & Streicher T. (2007). Relating first-order set theories and elementary toposes. Bulletin of Symbolic Logic, 13, 340–358.
Awodey S., & Warren M. A. (2009). Homotopy theoretic models of identity types. Mathematical Proceedings of the Cambridge Philosophical Society, 146, 45–55.
Baez J. C., & Dolan J. (1998). Higher-dimensional algebra. III. n-categories and the algebra of opetopes. Advances in Mathematics, 135, 145–206.
Boileau A., & Joyal A. (1981). La logique des topos. Journal of Symbolic Logic, 46, 6–16.
Corry L. (1996). Modern Algebra and the Rise of Mathematical Structures, . Basel, Switzerland: Birkhäuser Verlag.
Curtis C. E. (1999). Pioneers of Representation Theory: Frobenius, Burnside, Schur, and Brauer, Vol. 15 of Histcory of Mathematics. Providence, RI: American Mathematical Society.
Dehaene S. (2011). The Number Sense: How the Mind Creates Mathematics. New York: Oxford University Press, .
Dehaene S., & Brannon E. M. editors. (2011). Space, Time and Number in the Brain: Searching for the Foundations of Mathematical Thought (first edition). London: Elsevier.
Feferman S. (1977). Categorical foundations and foundations of category theory. In Logic, Foundations of Mathematics and Computability Theory (Proc. Fifth Internat. Congr. Logic, Methodology and Philos. of Sci., Univ. Western Ontario, London, Ont., 1975), Part I, Vol. 9. . Dordrecht, The Netherlands: Reidel, pp. 149–169.
Feigenson L. (2011). Objects, sets, and ensembles. In Dehaene S., and Brannon E. M., editors. Space, Time and Number in the Brain: Searching for the Foundations of Mathematical Thought, . London: Elsevier, pp. 13–22.
Ferreirós J. (2001). The road to modern logic—an interpretation. Bulletin of Symbolic Logic, 7, 441–484.
Fourman M. P. (1977). The logic of topoi. In Barwise J., editor. Handbook of Mathematical Logic, Vol. 90 of Studies in Logic and the Foundations of Mathematics. Amsterdam: Elsevier, pp. 1053–1090.
Fourman M. P., & Scott D. S. (1979). Sheaves and logic. In Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977), Vol. 753 of Lecture Notes in Math.. Berlin, Germany: Springer, pp. 302–401.
Fréchet M. (1951). Abstract sets, abstract spaces and general analysis. Mathematics Magazine, 24, 147–155.
Goel V. (2007). Anatomy of deductive reasoning. Trends in Cognitive Sciences, 11, 435–441.
Hellman G., & Bell J. L. (2006). Pluralism and the foundations of mathematics. In Kellert S. H., Longino H. E., and Waters C. K. editors. Scientific Pluralism, . Minneapolis, MN: University of Minnesota Press, pp. 64–79.
Hermida C., Makkai M., & Power J. (2000). On weak higher dimensional categories. I. 1. Journal of Pure and Applied Algebra, 154, 221–246.
Hermida C., Makkai M., & Power J. (2001). On weak higher-dimensional categories. I.2. Journal of Pure and Applied Algebra, 157, 247–277.
Hermida C., Makkai M., & Power J. (2002). On weak higher-dimensional categories. I. 3. Journal of Pure and Applied Algebra, 166, 83–104.
Houdé O., & Tzourio-Mazoyer N. (2003). Neural foundations of logical and mathematical cognition. Nature Reviews Neuroscience, 4, 507–514.
Izard V., Pica P., Dehaene S., Hinchey D., & Spelke E. (2011). Geometry as a universal mental construction. In Dehaene S., and Brannon E. M., editors. Space, Time and Number in the Brain: Searching for the Foundations of Mathematical Thought: An Attention and Performance Series Volume. Amsterdam: Elsevier, pp. 319–332.
Johnstone P. T. (2002). Sketches of an Elephant: A Topos Theory Compendium. Vol. 1, Vol. 43 of Oxford Logic Guides. New York: The Clarendon Press Oxford University Press.
Joyal A., & Moerdijk I. (1995). Algebraic Set Theory, Vol. 220 of London Mathematical Society Lecture Note Series. Cambridge, UK: Cambridge University Press.
Krömer R. (2007). Tool and Object: A History and Philosophy of Category Theory, Vol. 32 of Science Networks. Historical Studies. Basel, Switzerland: .
Lambek J., & Scott P. J. (1986). Introduction to Higher Order Categorical Logic, Vol. 7. Cambridge, UK: Cambridge University Press.
Landry E., & Marquis J.-P. (2005). Categories in context: Historical, foundational, and philosophical. Philosophy of Mathematics, 12, 1–43.
Lawvere F. W. (1964). An elementary theory of the category of sets. Proceedings of the National Academy of Sciences of the United States of America, 52, 1506–1511.
Lawvere F. W. (1976). Variable quantities and variable structures in topoi. In Algebra, Topology, and Category Theory (A Collection of Papers in Honor of Samuel Eilenberg). New York: Academic Press, pp. 101–131.
Lawvere F. W. (2005). An elementary theory of the category of sets (long version) with commentary. Reprints in Theory and Applications of Categories, 11, 1–35. .
Leinster T. (2002). A survey of definitions of n-category. Theory and Applications of Categories, 10, 1–70.
Macnamara J., & Reyes G. E. (1994). The Logical Foundations of Cognition, Vol. 4. New York: Oxford University Press.
Makkai M. (1998). Towards a categorical foundation of mathematics. In Logic Colloquium ’95 (Haifa), Vol. 11 of Lecture Notes Logic. Berlin, Germany: Springer, pp. 153–190.
Makkai M. (1999). On structuralism in mathematics. In Language, Logic, and Concepts, . Cambridge, MA: MIT Press, pp. 43–66.
Makkai M., & Reyes G. E. (1977). First Order Categorical Logic. , Vol. 611. Berlin, Germany: Springer-Verlag. .
Makkai M., & Zawadowski M. (2001). Duality for simple ω-categories and disks. Theory and Applications of Categories, 8, 114–243.
Marquis J.-P. (1995). Category theory and the foundations of mathematics: Philosophical excavations. Synthese, 103, 421–447.
Marquis J.-P. (2009). From a Geometrical Point of View, Vol. 14 of Logic, Epistemology, and the Unity of Science. Dordrecht, The Netherlands: Springer. .
Marquis J.-P. (2011). Mathematical forms and forms of mathematics: Leaving the shores of extensional mathematics. Synthese, 1–24. .
Marquis J.-P., & Reyes G. E. (2012). The history of categorical logic: . In Gabbay D. M., Kanamori A., and Woods J., editors. Sets and Extensions in the Twentieth Century, Vol. 6 of Handbook of the History of Logic, . Amsterdam: Elsevier, p. 689–800.
Martin-Löf P. (1984). Intuitionistic Type Theory, Vol. 1 of Studies in Proof Theory. Lecture Notes. Naples, France: .
McLarty C. (1992). Elementary Categories, Elementary Toposes, Vol. 21 of Oxford Logic Guides. New York: The Clarendon Press Oxford University Press. .
Moore G. H. (1987). A house divided against itself: The emergence of first-order logic as the basis for mathematics. In Studies in the History of Mathematics, Vol. 26 of MAA Stud. Math., Washington, DC: Math. Assoc. America, pp. 98–136.
Moore G. H. (1988). The emergence of first-order logic. In History and Philosophy of Modern Mathematics (Minneapolis, MN, 1985), . Minneapolis, MN: Univ. Minnesota Press, pp. 95–135.
Moore G. H. (2007). The evolution of the concept of homeomorphism. Historia Mathematica, 34, 333–343.
Nordström B., Petersson K., & Smith J. M. (2000). Martin-Löf’s type theory. In Handbook of Logic in Computer Science, Vol. 5, Vol. 5 of Handb. Log. Comput. Sci. , New York: Oxford Univ. Press, pp. 1–37.
Scott D. (1979). Identity and existence in intuitionistic logic. In Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977), Vol. 753 of Lecture Notes in Math. Berlin, Germany: Springer, pp. 660–696.
Shulman M. A. (2008). .
Spaepen E., Coppola M., Spelke E. S., Carey S. E., & Goldin-Meadow S. (2011). Number without a language model. Proceedings of the National Academy of Sciences of the United States of America, 108, 3163–3168.
van den Berg B., & Moerdijk I. (2009). A unified approach to algebraic set theory. In Logic Colloquium 2006, Vol. 32 of Lect. Notes Log.. Chicago, IL: Assoc. Symbol. Logic, pp. 18–37.
Voevodsky V. (2010). .
Wussing H. (1984). The Genesis of the Abstract Group Concept. Cambridge, MA: MIT Press. .