Skip to main content
×
Home

CATEGORICAL FOUNDATIONS OF MATHEMATICS OR HOW TO PROVIDE FOUNDATIONS FOR ABSTRACT MATHEMATICS

  • JEAN-PIERRE MARQUIS (a1)
Abstract
Abstract

Feferman’s argument presented in 1977 seemed to block any possibility for category theory to become a serious contender in the foundational game. According to Feferman, two obstacles stand in the way: one logical and the other psychological. We address both obstacles in this paper, arguing that although Feferman’s argument is indeed convincing in a certain context, it can be dissolved entirely by modifying the context appropriately.

Copyright
Corresponding author
*DÉPARTEMENT DE PHILOSOPHIE and CIRST, UNIVERSITÉ DE MONTRÉAL, H3C 3J7 MONTRÉAL, QC, CANADA E-mail: jean-pierre.marquis@umontreal.ca
References
Hide All
Awodey S. (2008). A brief introduction to algebraic set theory. Bulletin of Symbolic Logic, 14, 281298.
Awodey S. (2012). Type theory and homotopy. In Dybjer P., et al. ., editors. Epistemology versus Ontology: Essays on the Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf. New York, NY: Springer. To appear.
Awodey S., Butz C., Simpson A., & Streicher T. (2007). Relating first-order set theories and elementary toposes. Bulletin of Symbolic Logic, 13, 340358.
Awodey S., & Warren M. A. (2009). Homotopy theoretic models of identity types. Mathematical Proceedings of the Cambridge Philosophical Society, 146, 4555.
Baez J. C., & Dolan J. (1998). Higher-dimensional algebra. III. n-categories and the algebra of opetopes. Advances in Mathematics, 135, 145206.
Boileau A., & Joyal A. (1981). La logique des topos. Journal of Symbolic Logic, 46, 616.
Corry L. (1996). Modern Algebra and the Rise of Mathematical Structures, Vol. 17 of Science Networks. Historical Studies. Basel, Switzerland: Birkhäuser Verlag.
Curtis C. E. (1999). Pioneers of Representation Theory: Frobenius, Burnside, Schur, and Brauer, Vol. 15 of Histcory of Mathematics. Providence, RI: American Mathematical Society.
Dehaene S. (2011). The Number Sense: How the Mind Creates Mathematics. New York: Oxford University Press, rev. and updated edition.
Dehaene S., & Brannon E. M. editors. (2011). Space, Time and Number in the Brain: Searching for the Foundations of Mathematical Thought (first edition). London: Elsevier.
Feferman S. (1977). Categorical foundations and foundations of category theory. In Logic, Foundations of Mathematics and Computability Theory (Proc. Fifth Internat. Congr. Logic, Methodology and Philos. of Sci., Univ. Western Ontario, London, Ont., 1975), Part I, Vol. 9. Univ. Western Ontario Ser. Philos. Sci. Dordrecht, The Netherlands: Reidel, pp. 149169.
Feigenson L. (2011). Objects, sets, and ensembles. In Dehaene S., and Brannon E. M., editors. Space, Time and Number in the Brain: Searching for the Foundations of Mathematical Thought, chapter 2. London: Elsevier, pp. 1322.
Ferreirós J. (2001). The road to modern logic—an interpretation. Bulletin of Symbolic Logic, 7, 441484.
Fourman M. P. (1977). The logic of topoi. In Barwise J., editor. Handbook of Mathematical Logic, Vol. 90 of Studies in Logic and the Foundations of Mathematics. Amsterdam: Elsevier, pp. 10531090.
Fourman M. P., & Scott D. S. (1979). Sheaves and logic. In Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977), Vol. 753 of Lecture Notes in Math.. Berlin, Germany: Springer, pp. 302401.
Fréchet M. (1951). Abstract sets, abstract spaces and general analysis. Mathematics Magazine, 24, 147155.
Goel V. (2007). Anatomy of deductive reasoning. Trends in Cognitive Sciences, 11, 435441.
Hellman G., & Bell J. L. (2006). Pluralism and the foundations of mathematics. In Kellert S. H., Longino H. E., and Waters C. K. editors. Scientific Pluralism, Minnesota studies in the philosophy of science. Minneapolis, MN: University of Minnesota Press, pp. 6479.
Hermida C., Makkai M., & Power J. (2000). On weak higher dimensional categories. I. 1. Journal of Pure and Applied Algebra, 154, 221246.
Hermida C., Makkai M., & Power J. (2001). On weak higher-dimensional categories. I.2. Journal of Pure and Applied Algebra, 157, 247277.
Hermida C., Makkai M., & Power J. (2002). On weak higher-dimensional categories. I. 3. Journal of Pure and Applied Algebra, 166, 83104.
Houdé O., & Tzourio-Mazoyer N. (2003). Neural foundations of logical and mathematical cognition. Nature Reviews Neuroscience, 4, 507514.
Izard V., Pica P., Dehaene S., Hinchey D., & Spelke E. (2011). Geometry as a universal mental construction. In Dehaene S., and Brannon E. M., editors. Space, Time and Number in the Brain: Searching for the Foundations of Mathematical Thought: An Attention and Performance Series Volume. Amsterdam: Elsevier, pp. 319332.
Johnstone P. T. (2002). Sketches of an Elephant: A Topos Theory Compendium. Vol. 1, Vol. 43 of Oxford Logic Guides. New York: The Clarendon Press Oxford University Press.
Joyal A., & Moerdijk I. (1995). Algebraic Set Theory, Vol. 220 of London Mathematical Society Lecture Note Series. Cambridge, UK: Cambridge University Press.
Krömer R. (2007). Tool and Object: A History and Philosophy of Category Theory, Vol. 32 of Science Networks. Historical Studies. Basel, Switzerland: Birkhäuser Verlag.
Lambek J., & Scott P. J. (1986). Introduction to Higher Order Categorical Logic, Vol. 7. Cambridge, UK: Cambridge University Press.
Landry E., & Marquis J.-P. (2005). Categories in context: Historical, foundational, and philosophical. Philosophy of Mathematics, 12, 143.
Lawvere F. W. (1964). An elementary theory of the category of sets. Proceedings of the National Academy of Sciences of the United States of America, 52, 15061511.
Lawvere F. W. (1976). Variable quantities and variable structures in topoi. In Algebra, Topology, and Category Theory (A Collection of Papers in Honor of Samuel Eilenberg). New York: Academic Press, pp. 101131.
Lawvere F. W. (2005). An elementary theory of the category of sets (long version) with commentary. Reprints in Theory and Applications of Categories, 11, 135. Reprinted and expanded from Proc. Nat. Acad. Sci. U.S.A. 52 (1964) [MR0172807], With comments by the author and Colin McLarty.
Leinster T. (2002). A survey of definitions of n-category. Theory and Applications of Categories, 10, 170.
Macnamara J., & Reyes G. E. (1994). The Logical Foundations of Cognition, Vol. 4. New York: Oxford University Press.
Makkai M. (1998). Towards a categorical foundation of mathematics. In Logic Colloquium ’95 (Haifa), Vol. 11 of Lecture Notes Logic. Berlin, Germany: Springer, pp. 153190.
Makkai M. (1999). On structuralism in mathematics. In Language, Logic, and Concepts, Bradford Book. Cambridge, MA: MIT Press, pp. 4366.
Makkai M., & Reyes G. E. (1977). First Order Categorical Logic. Lecture Notes in Mathematics, Vol. 611. Berlin, Germany: Springer-Verlag. Model-theoretical methods in the theory of topoi and related categories.
Makkai M., & Zawadowski M. (2001). Duality for simple ω-categories and disks. Theory and Applications of Categories, 8, 114243.
Marquis J.-P. (1995). Category theory and the foundations of mathematics: Philosophical excavations. Synthese, 103, 421447.
Marquis J.-P. (2009). From a Geometrical Point of View, Vol. 14 of Logic, Epistemology, and the Unity of Science. Dordrecht, The Netherlands: Springer. A study of the history and philosophy of category theory.
Marquis J.-P. (2011). Mathematical forms and forms of mathematics: Leaving the shores of extensional mathematics. Synthese, 124. 10.1007/s11229-011-9962-0.
Marquis J.-P., & Reyes G. E. (2012). The history of categorical logic: 1963-1977. In Gabbay D. M., Kanamori A., and Woods J., editors. Sets and Extensions in the Twentieth Century, Vol. 6 of Handbook of the History of Logic, chapter 10. Amsterdam: Elsevier, p. 689800.
Martin-Löf P. (1984). Intuitionistic Type Theory, Vol. 1 of Studies in Proof Theory. Lecture Notes. Naples, France: Bibliopolis. Notes by Giovanni Sambin.
McLarty C. (1992). Elementary Categories, Elementary Toposes, Vol. 21 of Oxford Logic Guides. New York: The Clarendon Press Oxford University Press. Oxford Science Publications.
Moore G. H. (1987). A house divided against itself: The emergence of first-order logic as the basis for mathematics. In Studies in the History of Mathematics, Vol. 26 of MAA Stud. Math., Washington, DC: Math. Assoc. America, pp. 98136.
Moore G. H. (1988). The emergence of first-order logic. In History and Philosophy of Modern Mathematics (Minneapolis, MN, 1985), Minnesota Stud. Philos. Sci., XI. Minneapolis, MN: Univ. Minnesota Press, pp. 95135.
Moore G. H. (2007). The evolution of the concept of homeomorphism. Historia Mathematica, 34, 333343.
Nordström B., Petersson K., & Smith J. M. (2000). Martin-Löf’s type theory. In Handbook of Logic in Computer Science, Vol. 5, Vol. 5 of Handb. Log. Comput. Sci. , New York: Oxford Univ. Press, pp. 137.
Scott D. (1979). Identity and existence in intuitionistic logic. In Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977), Vol. 753 of Lecture Notes in Math. Berlin, Germany: Springer, pp. 660696.
Shulman M. A. (2008). Set theory for category theory. 10.
Spaepen E., Coppola M., Spelke E. S., Carey S. E., & Goldin-Meadow S. (2011). Number without a language model. Proceedings of the National Academy of Sciences of the United States of America, 108, 31633168.
van den Berg B., & Moerdijk I. (2009). A unified approach to algebraic set theory. In Logic Colloquium 2006, Vol. 32 of Lect. Notes Log.. Chicago, IL: Assoc. Symbol. Logic, pp. 1837.
Voevodsky V. (2010). Univalent foundations project.
Wussing H. (1984). The Genesis of the Abstract Group Concept. Cambridge, MA: MIT Press. A contribution to the history of the origin of abstract group theory, Translated from the German by Abe Shenitzer and Hardy Grant.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Review of Symbolic Logic
  • ISSN: 1755-0203
  • EISSN: 1755-0211
  • URL: /core/journals/review-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 30 *
Loading metrics...

Abstract views

Total abstract views: 205 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st November 2017. This data will be updated every 24 hours.