Skip to main content
×
Home

COMPLETENESS VIA CORRESPONDENCE FOR EXTENSIONS OF THE LOGIC OF PARADOX

  • BARTELD KOOI (a1) and ALLARD TAMMINGA (a2)
Abstract
Abstract

Taking our inspiration from modal correspondence theory, we present the idea of correspondence analysis for many-valued logics. As a benchmark case, we study truth-functional extensions of the Logic of Paradox (LP). First, we characterize each of the possible truth table entries for unary and binary operators that could be added to LP by an inference scheme. Second, we define a class of natural deduction systems on the basis of these characterizing inference schemes and a natural deduction system for LP. Third, we show that each of the resulting natural deduction systems is sound and complete with respect to its particular semantics.

Copyright
Corresponding author
*FACULTY OF PHILOSOPHY, UNIVERSITY OF GRONINGEN, OUDE BOTERINGESTRAAT 52, 9712 GL GRONINGEN, THE NETHERLANDS E-mail: b.p.kooi@rug.nl, a.m.tamminga@rug.nl
INSTITUTE OF PHILOSOPHY, UNIVERSITY OF OLDENBURG, AMMERLÄNDER HEERSTRASSE 114–118, 26129 OLDENBURG, GERMANY E-mail: allard.tamminga@uni-oldenburg.de
References
Hide All
Anderson A. R., & Belnap N. D. (1975). Entailment. The Logic of Relevance and Necessity, Vol. 1. Princeton, NJ: Princeton University Press.
Brady R. T. (1982). Completeness proofs for the systems RM 3 and BN 4. Logique et Analyse, 25, 932.
D’Ottaviano I. M. L., & da Costa N. C. A. (1970). Sur un problème de Jaśkowski. Comptes rendus hebdomadaires des séances de l’Académie des sciences, 270A, 13491353.
Epstein R. L., & D’Ottaviano I. M. L. (2000). Paraconsistent logic: J 3. In Epstein R. L. Propositional Logics (second edition), chapter 9. Belmont, CA: Wadsworth Publishing Company.
Priest G. (1979). The logic of paradox. Journal of Philosophical Logic, 8, 219241.
Sahlqvist H. (1975). Completeness and correspondence in the first and second order semantics for modal logic. In Kanger S., editor. Proceedings of the Third Scandinavian Logic Symposium. Amsterdam: North-Holland Publishing Company, pp. 110143.
Troelstra A. S., & Schwichtenberg H. (1996). Basic Proof Theory. Cambridge, UK: Cambridge University Press.
van Benthem J. (1976). Modal correspondence theory. PhD Thesis, Universiteit van Amsterdam, Amsterdam.
van Benthem J. (2001). Correspondence theory. In Gabbay D. M., and Guenthner F., editors. Handbook of Philosophical Logic (second edition), Vol. 3. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 325408.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Review of Symbolic Logic
  • ISSN: 1755-0203
  • EISSN: 1755-0211
  • URL: /core/journals/review-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 15 *
Loading metrics...

Abstract views

Total abstract views: 140 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th November 2017. This data will be updated every 24 hours.