Skip to main content Accessibility help
×
Home

A FORMAL SYSTEM FOR EUCLID’S ELEMENTS

  • JEREMY AVIGAD (a1), EDWARD DEAN (a2) and JOHN MUMMA (a3)

Abstract

We present a formal system, E, which provides a faithful model of the proofs in Euclid’s Elements, including the use of diagrammatic reasoning.

Copyright

Corresponding author

*JEREMY AVIGAD, DEPARTMENT OF PHILOSOPHY, CARNEGIE MELLON UNIVERSITY, PITTSBURGH, PA 15213 E-mail:avigad@cmu.edu
EDWARD DEAN, DEPARTMENT OF PHILOSOPHY, CARNEGIE MELLON UNIVERSITY, PITTSBURGH, PA 15213 E-mail:edean@andrew.cmu.edu
JOHN MUMMA, DIVISION OF LOGIC METHODOLOGY, AND PHILOSOPHY OF SCIENCE AT THE SUPPES, CENTER FOR HISTORY AND PHILOSOPHY OF SCIENCE, BUILDING 200, STANFORD, CA 94305–2024 E-mail:john.mumma@gmail.com

References

Hide All
Avigad, J. (2009). Review of Marcus Giaquinto, Visual thinking in mathematics: an epistemological study. Philosophia Mathematica, 17:95–108.
Barrett, C., & Tinelli, C. (2007). CVC3. In Damm, W., and Hermanns, H., editors. Computer Aided Verification (CAV) 2007. Berlin: Springer, pp. 298–302.
Beeson, M. (to appear). Constructive Euclidean geometry. In Arai, T., Chi Tat, C., Downey, R., Brendle, J., Feng, Q., Kikyo, H., and Ono, H., editors. Proceedings of 10th Asian Logic Conference. Kobe, Japan.
Berkeley, G. (1734). A Treaties Concerning the Principles of Human Knowledge. Reprinted in Clarke, D. M., editor. Berkeley, CA: Philosophical writings and Cambridge, UK: Cambridge University Press, pp. 67–150, 2008.
Bockmayr, A., & Weispfenning, V. (2001). Solving Numerical Constraints. In Robinson, A., and Voronkov, A., editors. Handbook of Automated Reasoning. Amsterdam, The Netherlands: Elsevier Science, pp. 751–842.
Bos, H. J. M. (2001). Redefining Geometrical Exactness: Descartes’ Transformation of the Early Modern Concept of Construction. New York, NY: Springer.
Buss, S. R. (1998). An introduction to proof theory. In Buss, Samuel R., editor. The Handbook of Proof Theory. Amsterdam, The Netherlands: North-Holland, pp. 1–78.
Chou, S. C., & Gao, X. S. (2001). Automated reasoning in geometry. In Robinson, A., and Voronkov, A., editors. Handbook of Automated Reasoning. Amsterdam, The Netherlands: Elsevier Science, pp. 707–750.
Chou, S. C., Gao, X. S., & Zhang, J. Z. (1994). Machine Proofs in Geometry. Singapore: World Scientific.
Collins, G. E. (1975). Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In Brakhage, H., editor. Automata Theory and Formal Languages. Berlin: Springer, pp. 134–183.
Coxeter, H. S. M. (1969). Introduction to Geometry (second edition). New York, NY: John Wiley & Sons Inc.
Dean, E. (2008). In defense of Euclidean proof. Master’s Thesis, Carnegie Mellon University.
Dershowitz, N., & Plaisted, D. A. (2001). Rewriting. In Robinson, A., and Voronkov, A., editors. Handbook of Automated Reasoning. Amsterdam, The Netherlands: Elsevier Science, pp. 535–607.
Euclid, . (1956). The Thirteen Books of the Elements (second edition, Vols. I–III). New York, NY: Dover Publications. Translated with introduction and commentary by Sir Thomas L. Heath, from the text of Heiberg. The Heath translation has also been issued as Euclid’s Elements: All Thirteen Books Complete in One Volume Green Lion Press, Santa Fe, 2002.
Friedman, M. (1985). Kant’s theory of geometry. Philosophical Review, 94, 455–506. Revised version in Michael Friedman, Kant and the Exact Sciences. Cambridge, MA: Cambridge: Harvard University Press, 1992.
Gebert, J. R., & Kortenkap, U. H. (1999). The Interactive Geometry Software Cinderella. Berlin: Springer.
Giaquinto, M. (2007). Visual Thinking in Mathematics: An Epistemological Study. Oxford, UK: Oxford University Press.
Goodwin, W. M. (2003). Kant’s philosophy of geometry. PhD Thesis, University of California, Berkeley.
Hartshorne, R. (2005). Geometry: Euclid and Beyond. New York, NY: Springer.
Hilbert, D. (1899). Grundlagen der Geometrie. In Festschrift zur Feier der Enthüllung des Gauss-Weber Denkmals in Göttingen. Leipzig, Germany: Teubner. Translated by Leo Unger as Foundations of Geometry, Open Court, La Salle, 1971. Ninth printing, 1997.
Hungerford, T. W. (1974). Algebra. New York, NY: Springer.
Kant, I. (1998). Kritik der reinen Vernunft (first edition 1781, second edition 1787). Translated and edited by Paul Guyer and Allen W. Wood as Critique of Pure Reason. Cambridge, UK: Cambridge University Press.
Key Curriculum Press, editor. (2002). The Geometer’s Sketchpad: Student Edition. Emeryville, CA: Key Curriculum.
Knorr, W. R. (1985). The Ancient Tradition of Geometric Problems. Boston, MA: Birkhäuser.
Krantz, D., Luce, R. D., Suppes, P., & Tversky, A. (1971). Foundations of Measurement, Vols. I and II. New York, NY: Academic Press.
Leibniz, G. (1949). New Essays Concerning Human Understanding. La Salle, IL: Open Court Publishing.
Leitgeb, H. (to appear). On formal and informal provability. In Linnebo, O., and Bueno, O., editors. New Waves in Philosophy of Mathematics. Palgrave Macmillan.
Macbeth, D. (preprint). Diagrammatic reasoning in Euclid’s Elements. Preprint.
Mancosu, P. (1996). Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century. New York, NY: Oxford University Press.
Manders, K. (2008a) Diagram-based geometric practice. In Mancosu, P., editor. The Philosophy of Mathematical Practice. Oxford, UK: Oxford University Press, pp. 65–79.
Manders, K. (2008b). The Euclidean diagram. In Mancosu, P., editor. The Philosophy of Mathematical Practice. Oxford, UK: Oxford University Press, pp. 80–133. MS first circulated in 1995.
Manna, Z., & Zarba, C. G. (2003). Combining decision procedures. In Aichernig, B., and Maibaum, T., editors. Formal Methods at the Crossroads. Berlin: Springer, pp. 381–422.
Meng, J., & Paulson, L. C. (2008). Translating higher-order clauses to first-order clauses. Journal of Automated Reasoning, 40, 35–60.
Miller, N. (2008). Euclid and his Twentieth Century Rivals: Diagrams in the Logic of Euclidean Geometry. Stanford, CA: CSLI. Based on Miller’s thesis (2001). A diagrammatic formal system for Euclidean geometry. PhD Thesis, Cornell University.
Morrow, G., editor. (1970). Proclus: A Commentary on the First Book of Euclid’s Elements. Princeton, NJ: Princeton University Press.
de Moura, L. M., & Bjørner, N. (2008). Z3: An efficient SMT solver. In Ramakrishnan, C. R., and Rehof, J., editors. Tools and Algorithms for the Construction and Analysis of Systems (TACAS) 2008. Berlin: Springer, pp. 337–340.
Mueller, I. (1981). Philosophy of Mathematics and Deductive Structure in Euclid’s Elements. Cambridge, MA: MIT Press.
Mumma, J. (2006). Intuition formalized: Ancient and modern methods of proof in elementary geometry. PhD Thesis, Carnegie Mellon University.
Mumma, J. (2008). Review of Euclid and his twentieth century rivals, by Nathaniel Miller. Philosophia Mathematica, 16, 256–264.
Mumma, J. (to appear). Proofs, pictures, and Euclid. Synthese.
Narboux, J. (2007). A graphical user interface for formal proofs in geometry. Journal of Automated Reasoning, 39, 161–180.
Negri, S. (2003). Contraction-free sequent calculi for geometric theories with an application to Barr’s theorem. Archive for Mathematical Logic, 42, 389–401.
Negri, S., & von Plato, J. (1998). Cut elimination in the presence of axioms. Bulletin of Symbolic Logic, 4, 418–435.
Netz, R. (1999). The Shaping of Deduction in Greek mathematics: A Study of Cognitive History. Cambridge, UK: Cambridge University Press.
Panza, M. (preprint). The twofold role of diagrams in Euclid’s plane geometry. Preprint.
Pasch, M. (1882). Vorlesungen über neuere Geometrie. Leipzig, Germany: Teubner.
Peano, G. (1889). I principii di Geometria, logicamente esposti. Turin, Italy: Bocca.
von Plato, J. (1995). The axioms of constructive geometry. Annals of Pure and Applied Logic, 76, 169–200.
von Plato, J. (1998). A constructive theory of ordered affine geometry. Indagationes Mathematicae, 9, 549–562.
Prevosto, V., & Waldmann, U. (2006). Spass+T. In Sutcliffe, G., Schmidt, R., and Schulz, S., editors. Empirically Successful Computerized Reasoning (ESCoR) 2006. pp. 18–33.
Saito, K. (2006). A preliminary study in the critical assessment of diagrams in Greek mathematical works. SCIAMVS, 7, 81–44.
Schulz, S. (2002). E—A brainiac theorem prover. Journal of AI Communications, 15, 111–126.
Shabel, L. (2003). Mathematics in Kant’s Critical Philosophy: Reflections on Mathematical Practice. New York, NY: Routledge.
Shabel, L. (2004). Kant’s “argument from geometry.” Journal of the History of Philosophy, 42, 195–215.
Shabel, L. (2006). Kant’s philosophy of mathematics. In Guyer, P., editor. The Cambridge Companion to Kant (second edition). Cambridge, UK: Cambridge University Press.
Stein, H. (1990). Eudoxus and Dedekind: On the ancient Greek theory of ratios and its relation to modern mathematics. Synthese, 84, 163–211.
Tappenden, J. (2005). Proof style and understanding in mathematics I: Visualization, unification, and axiom choice. In Mancosu, P., Jorgensen, K. F., and Pedersen, S. A., editors. Visualization, Explanation and Reasoning Styles in Mathematics. Berlin: Springer, pp. 147–214.
Tarski, A. (1959). What is elementary geometry? In Henkin, L., Suppes, P., and Tarski, A., editors. The Axiomatic Method: With Special Reference to Geometry and Physics (first edition). Amsterdam, the Netherlands: North-Holland, pp. 16–29.
Tarski, A., & Givant, S. (1999). Tarski’s system of geometry. Bulletin of Symbolic Logic, 5, 175–214.
Troelstra, A. S., & Schwichtenberg, H. (2000). Basic Proof Theory (second edition). Cambridge, UK: Cambridge University Press.
Veroff, R. (2001). Solving open questions and other challenge problems using proof sketches. Journal of Automated Reasoning, 27, 157–174.
Weidenbach, C., Schmidt, R., Hillenbrand, T., Rusev, R., & Topic, D. (2007). System description: Spass version 3.0. In Pfenning, F., editor. CADE-21: 21st International Conference on Automated Deduction. Berlin: Springer, pp. 514–520.
Wilgus, W. (1998). Exploring the Basics of Geometry with Cabri. Dallas, TX: Texas Instruments.
Wu, W. T. (1994). Mechanical Theorem Proving in Geometries. Vienna, Austria: Springer. Translated from the 1984 Chinese original by Xiao Fan Jin and Dong Ming Wang.
Ziegler, M. (1982). Einige unentscheidbare Körpertheorien. L’enseignement mathématique, 28, 269–280. Unpublished translation by Michael Beeson.

A FORMAL SYSTEM FOR EUCLID’S ELEMENTS

  • JEREMY AVIGAD (a1), EDWARD DEAN (a2) and JOHN MUMMA (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed