Skip to main content
×
×
Home

FREGE’S CONSTRAINT AND THE NATURE OF FREGE’S FOUNDATIONAL PROGRAM

  • MARCO PANZA (a1) and ANDREA SERENI (a2)
Abstract

Recent discussions on Fregean and neo-Fregean foundations for arithmetic and real analysis pay much attention to what is called either ‘Application Constraint’ ( $AC$ ) or ‘Frege Constraint’ ( $FC$ ), the requirement that a mathematical theory be so outlined that it immediately allows explaining for its applicability. We distinguish between two constraints, which we, respectively, denote by the latter of these two names, by showing how $AC$ generalizes Frege’s views while $FC$ comes closer to his original conceptions. Different authors diverge on the interpretation of $FC$ and on whether it applies to definitions of both natural and real numbers. Our aim is to trace the origins of $FC$ and to explore how different understandings of it can be faithful to Frege’s views about such definitions and to his foundational program. After rehearsing the essential elements of the relevant debate (§1), we appropriately distinguish $AC$ from $FC$ (§2). We discuss six rationales which may motivate the adoption of different instances of $AC$ and $FC$ (§3). We turn to the possible interpretations of $FC$ (§4), and advance a Semantic $FC$ (§4.1), arguing that while it suits Frege’s definition of natural numbers (4.1.1), it cannot reasonably be imposed on definitions of real numbers (§4.1.2), for reasons only partly similar to those offered by Crispin Wright (§4.1.3). We then rehearse a recent exchange between Bob Hale and Vadim Batitzky to shed light on Frege’s conception of real numbers and magnitudes (§4.2). We argue that an Architectonic version of $FC$ is indeed faithful to Frege’s definition of real numbers, and compatible with his views on natural ones. Finally, we consider how attributing different instances of $FC$ to Frege and appreciating the role of the Architectonic $FC$ can provide a more perspicuous understanding of his foundational program, by questioning common pictures of his logicism (§5).

Copyright
Corresponding author
*CNRS, IHPST 13 RUE DU FOUR PARIS 75006, FRANCE (CNRS AND UNIV. PARIS 1, PANTHÉON-SORBONNE), E-mail: marco.panza@univ-paris1.fr and CHAPMAN UNIVERSITY ONE UNIVERSITY DRIVE ORANGE, CA 92866, USA E-mail: panza@chapman.edu
SCUOLA UNIVERSITARIA SUPERIORE IUSS PAVIA NETS CENTER PIAZZA DELLA VITTORIA, 15 27100 PAVIA, ITALY E-mail: andrea.sereni@iusspavia.it
References
Hide All
Batitsky, V. (2002). Some measurement-theoretic concerns about Hale’s ‘Reals by Abstraction’. Philosophia Mathematica, 10(3), 286303.
Benacerraf, P. (1965). What numbers could not be. Philosophical Review, 74(1), 4773.
Benacerraf, P. (1981). Frege: The last logicist. Midwest Studies in Philosophy, 6(1), 1736.
Boccuni, F. & Panza, M. (Manuscript). On the logicality of Frege’s definition of real numbers.
Currie, G. (1986). Continuity and change in Frege’s philosophy of mathematics. In Haaparanta, L. and Hintikka, J., editors. Frege Synthetisized. Esays on the Philosophical and Foundational Work of Gottlob Frege. Dordrecht, Boston, Lancaster, Tokyo: D. Reidel, pp. 345373.
Dedekind, R. (1888). Was sind und was sollen die Zahlen. Braunschweig: F. Vieweg und Sohn. Also in Dedekind, R. (1930–1932). Gesammelte Mathematische Werke (E. N. von Herausgegeben, R. Fricke, and Ö. Ore, editors), Vol. 3. Braunschweig: Vieweg, Chapter LI, 335–391.
Díez, J. A. (1997). A hundred years of numbers. An historical introduction to measurement theory 1887–1990. Studies in History and Philophy of Sciences, 28, 167–185, 237265.
Dummett, M. (1991). Frege. Philosophy of Mathematics. Cambridge (Massachusetts): Harvard University Press.
Frege, G. (1884). Die Grundlagen der Arithmetik. Eine Logische Mathematische Untersuchung über den Begriff der Zahl. Breslau: Verrlag von W. Koebner.
Frege, G. (1893–1903). Die Grundgesetze der Arithmetick, Vol. I–II. Jena: Hermann Pohle.
Frege, G. (1903). Über die Grundlagen der Geometrie. Jahresbericht der Deutschen Mathematiker-Vereinigung, 12, 319–324, 368375.
Frege, G. (1950). The Foundations of Arithmetic. A logico-mathematical enquiry into the concept of number (Translated by Austin, J. L., second revised edition). New York: Harper & Brothers.
Frege, G. (1971). On the Foundations of Geometry and Formal Theories of Arithmetic. Edited and translated by Kluge, E.-H. W. New Haven: Yale University Press.
Frege, G. (1976). Nachgelassene Schriften und Wissenschaftlicher Briefwechsel (Hermes, H., Kambartel, H., and Kaulbach, F., editors). Hamburg: Felix Meiner Verlag.
Frege, G. (2013). Basic Laws of Arithmetic. Tranlated and edited by Ebert, P. A. and Rossberg, M. with Wright, C.. Oxford: Oxford University Press.
Gandon, S. (2012). Russell’s Unknown Logicism. Palgrave MacMillan.
Gauss, C. F. (1831). Announcement of the Commentatio secunda to the Theoria residuorum biquadraticorum. Gottingische gelehrte Anzeigen, 1, 625–638. Also in Gauss, C. F. (1863–1917). Werke, Vol. 2. Herausgegeben von der Königlichen Gesellchaft der Wissenschaften zu Göttingen. Göttingen: Dietrich, pp. 169–178.
Goldfarb, W. (2001). Frege’s conception of logic. In Floyd, J. and Shieh, S., editors. Future Pasts: The Analytic Tradition in Twentieth-Century Philosophy, Oxford, New York: Oxford University Press, pp. 2541.
Hale, B. (2000). Reals by abstraction. Philosophia Mathematica (III), 8, 100123.
Hale, B. (2002). Real numbers, quantities, and measurement. Philosophia Mathematica, 10(3), 304323.
Hale, B. (2016). Definitions of numbers and their applications. In Ebert, P. A. and Rossberg, M., editors. Abstractionism: Essays in Philosophy of Mathematics, Oxford, New York: Oxford University Press, pp. 332349.
Hankel, H. (1687). Theorie der Complexen Zahlensysteme […]. Theil I der Vorlesugen über die Complexen Zahlen […] in Zwei Theilen. Leipzig: Leopold Voss.
Helmholtz, H. (1868). Ueber die Thatsachen, die der Geometrie zum Grunde liegen. Nachrichten von der Königlichen Gesellschaft der Wissenschaften […], 9, Juni 3, pp. 193221.
Helmoltz, H. v. (1887). Zählen und Messen, erkenntnisstheoretisch betrachtet. In Philosophische Aufsätze, Eduard Zeller zu seinem fünfzigjährigen Doctorjubiläum gewidmet, Leipzig: Fues’ Verlag, pp. 1752.
Hölder, O. (1901). Die axiome der quantität und die lehre vom mass. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, mathematisch-physischen Classe, 53, 164.
Jeshion, R. (2001). Frege’s notions of self-evidence. Mind, 110(440), 937976.
Kant, I. (1998). Critique of Pure Reason. Cambridge: Cambridge University Press. Tranlated and edited by Guyer, P. and Wood, A. W..
Kitcher, P. (1979). Frege’s epistemology. Philosophical Review, 88(2), 235262.
Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971–1990). Foundations of Measurement , Vol. 3. New York: Acedemic Press.
Kutschera, F. v. (1966). Freges begründung der analysis. Archiv für mathematische Logik und Grundlagenforschung, 9, 102111.
MacFarlane, J. (2002). Frege, Kant, and the logic in logicism. The Philosophical Review, 111(1), 2565.
McCallion, P. (2016). On Frege‘s applications constraint. In Ebert, P. A. and Rossberg, M., editors. Abstractionism: Essays in Philosophy of Mathematics. Oxford, New York: Oxford University Press, pp. 311322.
Menge, H. (editor) (1846). Euclidis Data. Lipsiæ: B. G. Tuebneri.
Mill, J. S. (1872). A System Of Logic, Ratiocinative And Inductive […], Eight Edition, Vol. 2. London: Longmans, Green, Reader, and Dyer.
Mill, J. S. (1877). System der Deductiven und Inductiven Logik […]. In’s Deutsche überetragen von J. Schiel. Vierte deutsche nach der Achten des Originals erweiterte Auflage, Vol. 2. Braunschweig: Friedrich Vieweg und Sohn.
Panza, M. (2016). Abstraction and epistemic economy. In Costreie, S., editor. Early Analytic Philosophy. New Perspective on the Tradition, Springer, Cham, Heidelberg, pp. 387428.
Panza, M. (2018). Was Frege a logicist for arithmetic. In Coliva, A., Leonardi, P., and Moruzzi, S., editors. Eva Picardi on Language, Analysis and History. London, New York: Palgrave Macmillan, pp. 87112.
Peacocke, C. (2015). Magnitudes: Metaphysics, explanation, and perception. In Moyal-Sharrock, D., Munz, V., and Coliva, A., editors. Mind, Language and Action: Proceedings of the 36th International Wittgenstein Symposium, Berlin, Munich, Boston: De Gruyter, pp. 357387.
Riemann, B (1866–1867). Ueber die Hypothesen, welche der Geometrie zu Grunde liegen. Abhandlungen der Königlichen Gesellshaft der Wissenshaften zu Göttingen, 13, 133150.
Riemann, B. (2016). Bernhard Riemann. On the Hypotheses Which Lie at the Bases of Geometry . Switzerland: Birkhäuser, Springer International Publishing. Edited by Jost, Jürgen.
Russell, B. (1903). The Principles of Mathematics. Cambridge: Cambridge University Press.
Russell, B. & Whitehead, A. N. (1910–1913). Principia Mathematica, Vol. 3. Cambridge: Cambridge University Press.
Sereni, A. (manuscript). On the Philosophical Significance of Frege’s Constraint.
Shapiro, S. (1997). Philosophy of Mathematics: Structure and Ontology, Vol.2. Oxford: Oxford University Press.
Shapiro, S. (2000). Frege meets dedekind: A Neologicist treatment of real analysis. Notre Dame Journal of Formal Logic, 4, 317421.
Shapiro, S. (2009). We hold these truths to be self-evident: But what do we mean by that? Review of Symbolic Logic, 2(1), 175207.
Simons, P. (1987). Frege’s theory of real numbers. History and Philosophy of Logic, 8, 25–44. Also in Demopoulos, W. (1995). Frege’s Philosopjy of Mathematics. Cambridge, MA: Harvard University Press, pp. 358–383.
Snyder, E., Samuels, R., & Shapiro, S. (2018). Neologicism, Frege’s constraint, and the Frege-Heck condition. Noûs, doi: 10.1111/nous.12249.
Steiner, M. (1998). The Applicability of Mathematics as a Philosophical Problem. Cambridge (Massachusetts): Harvard University Press.
Steiner, M. (2005). Mathematics: Application and applicability. In Shapiro, S., editor. Oxford Handbook of the Philosophy of Mathematics and Logic, Oxford, New York: Oxford University Press, pp. 625650.
Taisbak, C. M. (2003). ΔEΔOMENA. Euclid’s Data or The Importance of Being Given. Copenhagen: Museaum Tusculanum Press.
Weiner, J. (1984). The philosopher behind the last lsogicist. Philosophical Quarterly, 34(136), 242264.
Weiner, J. (1990). Frege in Perspective. Cornell University Press.
Wright, C. (2000). Neo-Fregean foundations for real analysis: Some reflections on Frege’s constraint. Notre Dame Journal of Formal Logic, 41(4), 317334.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Review of Symbolic Logic
  • ISSN: 1755-0203
  • EISSN: 1755-0211
  • URL: /core/journals/review-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed