Hostname: page-component-cb9f654ff-9b74x Total loading time: 0 Render date: 2025-08-10T15:32:57.363Z Has data issue: false hasContentIssue false

$\gamma $-ADMISSIBILITY IN FIRST-ORDER RELEVANT LOGICS: PROOF USING NORMAL MODELS IN THE MARES–GOLDBLATT SETTING

Published online by Cambridge University Press:  12 December 2024

NICHOLAS FERENZ*
Affiliation:
CENTER OF PHILOSOPHY, SCHOOL OF ARTS AND HUMANITIES UNIVERSITY OF LISBON CIDADE UNIVERSITÁRIA, ALAMEDA DA UNIVERSIDADE 1649-004, LISBON PORTUGAL
THOMAS MACAULAY FERGUSON
Affiliation:
DEPARTMENT OF COGNITIVE SCIENCE RENSSELAER POLYTECHNIC INSTITUTE 110 8TH STREET, TROY, NY 12180 USA E-mail: tferguson@gradcenter.cuny.edu

Abstract

For relevant logics, the admissibility of the rule of proof $\gamma $ has played a significant historical role in the development of relevant logics. For first-order logics, however, there have been only a handful of $\gamma $-admissibility proofs for a select few logics. Here we show that, for each logic L of a wide range of propositional relevant logics for which excluded middle is valid (with fusion and the Ackermann truth constant), the first-order extensions QL and LQ admit $\gamma $. Specifically, these are particular “conventionally normal” extensions of the logic $\mathbf {G}^{g,d}$, which is the least propositional relevant logic (with the usual relational semantics) that admits $\gamma $ by the method of normal models. We also note the circumstances in which our results apply to logics without fusion and the Ackermann truth constant.

Information

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ackermann, W. (1956). Begründung einer Strengen Implikation. The Journal of Symbolic Logic, 21, 113128.10.2307/2268750CrossRefGoogle Scholar
Bimbó, K. (2007). Relevance logics. In Jacquette, D., editor, Philosophy of Logic, vol 5. of Handbook of the Philosophy of Science (Gabbay, D., Thagard, P. and Woods, J., eds.). North Holland: Elsevier, pp. 723789.Google Scholar
Brady, R. (1983). The Non-Triviality of Dialectical Set Theory. In Priest, G., Routley, R., and Norman, J., editors, Paraconsistent Logics: Essays in the Inconsistent. Munich: Philosophia Verlag, pp. 437471.Google Scholar
Brady, R. (1988). A content semantics for quantified relevant logics I. Studia Logica, 47, 111127.10.1007/BF00370286CrossRefGoogle Scholar
Brady, R. (1989). A content semantics for quantified relevant logics II. Studia Logica, 48, 243257.10.1007/BF02770515CrossRefGoogle Scholar
Dunn, J. M., & Restall, G. (2002). Relevance logic. In Gabbay, D. M., and Guenthner, F., editors. Handbook of Philosophical Logic (second edition). Netherlands: Springer, pp. 1128.Google Scholar
Ferenz, N. (2022). Conditional FDE logics. In Bimbó, K, editor. Relevance Logics and Other Tools for Reasoning. Essays in Honour of J. Michael Dunn, London: College Publications, pp. 182214.Google Scholar
Ferenz, N. (2023). Quantified modal relevant logics. Review of Symbolic Logic, 16, 210240.10.1017/S1755020321000216CrossRefGoogle Scholar
Ferenz, N., & Ferguson, T. M. (2024). $\gamma$ -admissibility for Mares’ varying domain QR . In Sedlár, I., editor, The Logica Yearbook 2023, London: College Publications. To appear.Google Scholar
Ferenz, N., & Tedder, A. (2023). Neighbourhood semantics for modal relevant logics. Journal of Philosophical Logic, 52, 145181.10.1007/s10992-022-09668-2CrossRefGoogle Scholar
Fine, K. (1988). Semantics for quantified relevance logics. Journal of Philosophical Logic, 17, 2259.10.1007/BF00249674CrossRefGoogle Scholar
Fine, K. (1989). Incompleteness for quantified relevant logics. In Norman, J. & Sylvan, R., editors. Directions in Relevant Logic. New York: Kluwer Academic Publishers, pp. 205225, Reprinted in Entailment vol. 2, §52, Anderson, Belnap, and Dunn, 1992.10.1007/978-94-009-1005-8_16CrossRefGoogle Scholar
Friedman, H., & Meyer, R. K. (1992). Whither relevant arithmetic? Journal of Symbolic Logic, 57(3), 824831.10.2307/2275433CrossRefGoogle Scholar
Humberstone, L. (2011). The Connectives. Cambridge: MA.10.7551/mitpress/9055.001.0001CrossRefGoogle Scholar
Kripke, S. (2022). A proof of gamma. In Bimbó, K., editor. Relevance Logics and Other Tools for Reasoning . Essays in Honor of J. Michael Dunn, London: College Publications, pp. 261265.Google Scholar
Mares, E., & Goldblatt, R. (2006). An alternative semantics for quantified relevant logic. The Journal of Symbolic Logic, 71, 163187.10.2178/jsl/1140641167CrossRefGoogle Scholar
Mares, E., & Meyer, R. K. (1992). The admissibility of $\gamma$ in R4 . Notre Dame Journal of Formal Logic, 33, 197206.Google Scholar
Mares, E. D. (2009). General information in relevant logic. Synthese, 167(2), 421440.10.1007/s11229-008-9412-9CrossRefGoogle Scholar
Meyer, R. K. (1976). Metacompleteness. Notre Dame Journal of Formal Logic, 17, 501516.10.1305/ndjfl/1093887722CrossRefGoogle Scholar
Meyer, R. K., & Dunn, J. M. (1969). E, R, and $\gamma$ . Journal of Symbolic Logic, 34, 460474.10.2307/2270909CrossRefGoogle Scholar
Meyer, R. K., Dunn, J. M., & Leblanc, H. (1974). Completeness of relevant quantification theories. Notre Dame Journal of Formal logic, 15, 97121.Google Scholar
Meyer, R. K., Giambrone, S., & Brady, R. (1984). Where gamma fails. Studia Logica, 43, 247256.10.1007/BF02429841CrossRefGoogle Scholar
Pudlák, P. (1998). The lengths of proofs. In Buss, S. R., editor. Handbook of Proof Theory. Amsterdam: North Holland, pp. 547637.10.1016/S0049-237X(98)80023-2CrossRefGoogle Scholar
Raftery, J. G., & Świrydowicz, K. (2016). Structural completeness in relevance logics. Studia Logica, 104, 381387.10.1007/s11225-015-9644-xCrossRefGoogle Scholar
Routley, R., & Meyer, R. K. (1972). The semantics of entailment (2). The Journal of Philosophical logic, 1, 5373.10.1007/BF00649991CrossRefGoogle Scholar
Routley, R., & Meyer, R. K. (1973). The semantics of entailment (1). In Leblanc, H., editor. Truth, Syntax, and Modality. Amsterdam: North-Holland, pp. 199243.10.1016/S0049-237X(08)71541-6CrossRefGoogle Scholar
Routley, R., Plumwood, V., Meyer, R. K., & Brady, R. T. (1982). Relevant Logics and Their Rivals: Part 1 The basic Philosophical and Semantical Theory. Ridgeview: Atascadero, CA.Google Scholar
Seki, T. (2003). General frames for relevant modal logics. Notre Dame Journal of Formal Logic, 44, 93109.10.1305/ndjfl/1082637806CrossRefGoogle Scholar
Seki, T. (2011a). The $\gamma$ -admissibility of relevant modal logics I—the method of normal models. Studia Logica, 97, 199231.10.1007/s11225-011-9306-6CrossRefGoogle Scholar
Seki, T. (2011b). The $\gamma$ -admissibility of relevant modal logics II—the method using metavaluations. Studia Logica, 97, 351383.10.1007/s11225-011-9315-5CrossRefGoogle Scholar
Seki, T. (2012). An algebraic proof of the admissibility of $\gamma$ in relevant modal logics. Studia Logica, 100, 11491174.10.1007/s11225-012-9459-yCrossRefGoogle Scholar
Slaney, J. K. (1987). Reduced models for relevant logics without WI. Notre Dame Journal of Formal Logic, 28(3), 395407.10.1305/ndjfl/1093637560CrossRefGoogle Scholar
Smiley, T. (1973). Relative necessity. Journal of Symbolic Logic, 28, 113134.10.2307/2271593CrossRefGoogle Scholar
Tedder, A., & Ferenz, N. (2022). Neighbourhood semantics for quantified relevant logics. Journal of Philosophical Logic, 51, 457484.10.1007/s10992-021-09637-1CrossRefGoogle Scholar
Urquhart, A. (2016). The story of $\gamma$ . In Bimbo, K., editor, J. Michael Dunn on Information Based Logics (Outstanding Contributions to Logic, vol. 8). Cham: Springer, pp. 93106.10.1007/978-3-319-29300-4_6CrossRefGoogle Scholar
Weiss, Y. (2020). Cut and gamma I: Propositional and constant domain R . The Review of Symbolic Logic, 13, 887909.10.1017/S1755020319000388CrossRefGoogle Scholar