[1]
Billingsley, P. (1995). Probability and Measure (third edition). New York, Chichester, Brisbane, Toronto, Singapore: John Wiley & Sons.

[2]
Bogachev, V. I. (2007). Measure Theory, Vol. II. Berlin, Heidelberg, New York: Springer.

[3]
Bovens, L. & Hartmann, S. (2004). Bayesian Epistemology. Oxford, UK: Oxford University Press.

[4]
Diaconis, P. & Zabell, S. L. (1982). Updating subjective probability. Journal of the American Statistical Association, 77, 822–830.

[5]
Doob, J. (1996). The development of rigor in mathematical probability theory (1900–1950). American Mathematical Monthly, 103(7), 586–595.

[6]
Doob, J. L. (1953). Stochastic Processes. New York: John Wiley & Sons.

[7]
Douglas, R. G. (1965). Contractive projections on an *L*
_{1}-space. Pacific Journal of Mathematics, 15(2), 443–462.

[8]
Earman, J. (1992). Bayes or Bust?
Cambridge, Massachusetts: MIT Press.

[9]
Easwaran, K. (2008). The Foundations of Conditional Probability. Ph.D. Thesis, University of California at Berkeley.

[10]
Easwaran, K. (2011). Bayesianism I: Introduction and arguments in favor. Philosophy Compass, 6, 312–320.

[11]
Easwaran, K. (2011) Bayesianism II: Applications and criticisms. Philosophy Compass, 6, 321–332.

[12]
Feller, W. (1966). An Introduction to Probability Theory and its Applications, Second Edition, Vol. 2. New York: Wiley. First edition: 1966.

[13]
Fremlin, D. H. (2001). Measure Theory, Vol. 2. Colchester, England: Torres Fremlin.

[14]
Gyenis, B. (2015). Bayes rules all. Submitted.

[15]
Gyenis, Z., Hofer-Szabó, G., & Rédei, M. (2016). Conditioning using conditional expectations: The Borel-Kolmogorov Paradox. Synthese, forthcoming, online March 26, 2016, doi: 10.1007/s11229-016-1070-8.
[16]
Gyenis, Z. & Rédei, M. (2016). The Bayes Blind Spot of a finite Bayesian Agent is a large set. Manuscript.

[17]
Hájek, A. (2003). What conditional probability could not be. Synthese, 137, 273–333.

[18]
Halmos, P. (1950). Measure Theory. New York: D. Van Nostrand.

[19]
Hartmann, S. & Sprenger, J. (2010). Bayesian epistemology. In Bernecker, S. and Pritchard, D., editors. Routledge Companion to Epistemology. London: Routledge, pp. 609–620.

[20]
Howson, C. (1996). Bayesian rules of updating. Erkenntnis, 45, 195–208.

[21]
Howson, C. (2014). Finite additivity, another lottery paradox, and conditionalization. Synthese, 191, 989–1012.

[22]
Howson, C. & Franklin, A. (1994). Bayesian conditionalization and probability kinematics. The British Journal for the Philosophy of Science, 45, 451–466.

[23]
Howson, C. & Urbach, P. (1989). Scientific Reasoning: The Bayesian Approach.
Illinois: Open Court. Second edition: 1993.

[24]
Huttegger, S. M. (2015). Merging of opinions and probability kinematics. The Review of Symbolic Logic, 8, 611–648.

[25]
Jaynes, E. T. (2003). Principles and pathology of orthodox statistics. In Larry Bretthorst, G., editor. Probability Theory. The Logic of Science. Cambridge: Cambridge University Press, pp. 447–483.

[26]
Jeffrey, R. C. (1965). The Logic of Decision (first edition). Chicago: The University of Chicago Press.

[27]
Kadison, R. V. & Ringrose, J. R. (1986). Fundamentals of the Theory of Operator Algebras, Vols. I. and II. Orlando: Academic Press.

[28]
Kalmbach, G. (1983). Orthomodular Lattices. London: Academic Press.

[29]
Kolmogorov, A. N. (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung. Berlin: Springer. English translation: Foundations of the Theory of Probability (Chelsea, New York, 1956).

[30]
Loéve, M. (1963). Probability Theory (third edition). Toronto, London, Melbourne: D. Van Nostrand, Princeton.

[31]
Marchand, J.-P. (1977). Relative coarse-graining. Foundations of Physics, 7, 35–49.

[32]
Marchand, J.-P. (1981). Statistical inference in quantum mechanics. In Gustafson, K. E. and Reinhard, W. P., editors. Quantum Mechanics in Mathematics, Chemistry, and Physics. New York: Plenum Press, pp. 73–81. Proceedings of a special session in mathematical physics organized as a part of the 774th meeting of the American Mathematical Society, held March 27–29, 1980, in Boulder, Colorado.

[33]
Marchand, J.-P. (1982). Statistical inference in non-commutative probability. Rendiconti del Seminario Matematico e Fisico di Milano, 52, 551–556.

[34]
Myrvold, W. (2015). You can’t always get what you want: Some considerations regarding conditional probabilities. Erkenntnis, 80, 572.

[35]
Petersen, K. (1989). Ergodic Theory. Cambridge: Cambridge University Press.

[36]
Pfanzagl, J. (1967). Characterizations of conditional expectations. The Annals of Mathematical Statistics, 38, 415–421.

[37]
Rao, M. M. (2005). Conditional Measures and Applications (second revised and expanded edition). Boca Raton, London, New York, Singapore: Chapman & Hall/CRC.

[38]
Rédei, M. (1998). Quantum Logic in Algebraic Approach. Fundamental Theories of Physics, Vol. 91. Dordrecht, The Netherlands: Kluwer Academic Publisher.

[39]
Rescorla, M. (2015). Some epistemological ramifications of the Borel-Kolmogorov Paradox. Synthese, 192(3), 735–767.

[40]
Roman, S. (2005). Field Theory (second edition). Graduate Texts in Mathematics, Vol. 158. New York: Springer.

[41]
Rosenthal, J. S. (2006). A First Look at Rigorous Probability Theory. Singapore: World Scientific.

[42]
Rudin, W. (1987). Real and Complex Analysis (third edition). Singapore: McGraw-Hill.

[43]
Villani, A. (1985). Another note on the inclusion
. The American Mathematical Monthly, 92, 485–487.

[44]
Wagner, C. (2002). Probability kinematics and commutativity. Philosophy of Science, 69, 266–278.

[45]
Weisberg, J. (2011). Varieties of Bayesianism. In Gabbay, D. M., Hartmann, S., and Woods, J., editors. Inductive Logic. Handbook of the History of Logic, Vol. 10. Oxford: North-Holland (Elsevier), pp. 477–551.

[46]
Weisberg, J. (2015). You’ve come a long way, Bayesians. Journal of Philosophical Logic, 44, 817–834.

[47]
Williamson, J. (2010). In Defence of Objective Bayesianism. Oxford: Oxford University Press.