Skip to main content
×
×
Home

HILBERT, DUALITY, AND THE GEOMETRICAL ROOTS OF MODEL THEORY

  • GÜNTHER EDER (a1) and GEORG SCHIEMER (a2)
Abstract
Abstract

The article investigates one of the key contributions to modern structural mathematics, namely Hilbert’s Foundations of Geometry (1899) and its mathematical roots in nineteenth-century projective geometry. A central innovation of Hilbert’s book was to provide semantically minded independence proofs for various fragments of Euclidean geometry, thereby contributing to the development of the model-theoretic point of view in logical theory. Though it is generally acknowledged that the development of model theory is intimately bound up with innovations in 19th century geometry (in particular, the development of non-Euclidean geometries), so far, little has been said about how exactly model-theoretic concepts grew out of methodological investigations within projective geometry. This article is supposed to fill this lacuna and investigates this geometrical prehistory of modern model theory, eventually leading up to Hilbert’s Foundations.

Copyright
Corresponding author
*DEPARTMENT OF PHILOSOPHY UNIVERSITY OF SALZBURG FRANZISKANERGASSE 1 A-5020 SALZBURG, AUSTRIA E-mail: guenther.eder@univie.ac.at
DEPARTMENT OF PHILOSOPHY UNIVERSITY OF VIENNA UNIVERSITÄTSSTRAßE 7 A-1010 VIENNA, AUSTRIA E-mail: georg.schiemer@univie.ac.at
References
Hide All
Andersen K. (2007). The Geometry of an Art – The History of the Mathematical Theory of Perspective from Alberti to Monge. Berlin Heidelberg: Springer.
Arana A. & Mancosu P. (2012). On the relationship between plane and solid geometry. The Review of Symbolic Logic, 5(2), 294353.
Baldus R. (1928). Zur Axiomatik der Geometrie. Über Hilberts Vollständigkeitsaxiom. Mathematische Annalen, 100, 321333.
Blanchette P. (2012). Frege’s Conception of Logic. Oxford: Oxford University Press.
Blanchette P. (2014). The Frege-Hilbert controversy. In Zalta E. N., editor. The Stanford Encyclopedia of Philosophy (Spring 2014 Edition). Available at: http://plato.stanford.edu/archives/spr2014/entries/frege-hilbert/.
Coxeter H. M. S. (1987). Projective Geometry (second edition). Berlin: Springer.
Eder G. (2016). Frege’s ‘On the foundations of geometry’ and axiomatic metatheory. Mind, 125(497), 540.
Field J. V. & Gray J. J. (1987). The Geometrical Work of Girard Desargues. New York: Springer.
Frege G. (1980). Philosophical and Mathematical Correspondence. Oxford: Blackwell Publishers.
Giovannini E. (2016). Bridging the gap between analytic and synthetic geometry: Hilbert’s axiomatic approach. Synthese, 193, 3170.
Gray J. (1989). Ideas of Space: Euclidean, NonEuclidean, and Relativistic. Oxford: Oxford University Press.
Gray J. (2007). Worlds out of Nothing – A Course in the History of Geometry in the 19th Century. New York: Springer.
Gray J. (2008). Plato’s Ghost: The Modernist Transformation of Mathematics. Princeton: Princeton University Press.
Hallett M. (1994). Hilbert’s axiomatic method and the laws of thought. In George A., editor. Mathematics and Mind. Oxford: Oxford University Press, pp. 158200.
Hallett M. (2008). Reflections on the purity of method in Hilbert’s Grundlagen der Geometrie . In Mancosu P., editor. The Philosophy of Mathematical Practice. Oxford: Oxford University Press, pp. 198255.
Hallett M. (2010). Frege and Hilbert. In Potter M. and Ricketts T., editors. The Cambridge Companion to Frege. Cambridge: Cambridge University Press, pp. 413464.
Hilbert D. (1968). Grundlagen der Geometrie (tenth edition). Leipzig: Teubner, An English translation is available as Foundations of Geometry, Unger L. (ed.), La Salle: Open Court Press, 1971.
Hilbert D. (1900a). Mathematische Probleme. Nachrichten von der königlichen Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physikalische Klasse, Vol. 3, 253296.
Hilbert D. (1900b). Über den Zahlbegriff. Jahresbericht der deutschen Mathematiker-Vereinigung, Vol. 8, 180185.
Hilbert D. (2004). David Hilbert’s Lectures on the Foundations of Geometry 1891–1902. Berlin Heidelberg: Springer-Verlag.
Hilbert D. (2013). David Hilbert’s Lectures on the Foundations of Arithmetic and Logic 1917–1933. Berlin Heidelberg: Springer.
Hilbert D. & Bernays B. (1934). Grundlagen der Mathematik, Vol. 1. Berlin: Springer, An English translation is available as Foundations of Mathematics I, Wirth C.-P. (ed.), London: College Publications, 2011.
Hintikka J. (1988). On the development of the model-theoretic viewpoint in logical theory. Synthese, 77(1), 136.
Hintikka J. (2011). What is the axiomatic method? Synthese, 183(1), 6985.
Hodges W. (1993). Model Theory. Cambridge: Cambridge University Press.
Kline M. (1972). Mathematical Thought from Ancient to Modern Times. New York: Oxford University Press.
Lindström P. (1997). Aspects of Incompleteness. Berlin: Springer.
Nagel E. (1939). The formation of modern conceptions of formal logic in the development of geometry. Osiris, 7, 142223.
Pasch M. (1882). Vorlesungen über neuere Geometrie. Leipzig: Teubner.
Poncelet V. (1822). Traité des propriétés projectives des figures. Paris: Gauthier-Villars.
Schiemer G. & Reck E. (2013). Logic in the 1930s: Type theory and model theory. Bulletin of Symbolic Logic, 19(4), 433472.
Schlimm D. (2010). Pasch’s philosophy of mathematics. Review of Symbolic Logic, 3(1), 93118.
Sieg W. (2014). The ways of Hilbert’s axiomatics: Structural and formal. Perspectives on Science, 22(1), 133157.
Tarski A. (1935). Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philosophica, 1, 261405.
Toepell M. (1986). Über die Entstehung von David Hilberts Grundlagen der Geometrie. Göttingen: Vandenhoeck & Ruprecht.
Torretti R. (1978). Philosophy of Geometry from Riemann to Poincaré. Dordrecht/Boston/London: D. Reidel.
Veblen O. & Young J. W. (1938). Projective Geometry. New York: Ginn and Company.
Visser A. (1997). An overview of interpretability logic. In Kracht M., Rijke M. d., Wansing H., editors. Advances in Modal Logic ’96. Stanford, CA: CSLI Publications, pp. 307359.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Review of Symbolic Logic
  • ISSN: 1755-0203
  • EISSN: 1755-0211
  • URL: /core/journals/review-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 104 *
Loading metrics...

* Views captured on Cambridge Core between 29th December 2017 - 23rd January 2018. This data will be updated every 24 hours.