Skip to main content
×
Home

HUSSERL AND GÖDEL’S INCOMPLETENESS THEOREMS

  • MIRJA HARTIMO (a1)
Abstract
Abstract

The paper examines Husserl’s interactions with logicians in the 1930s in order to assess Husserl’s awareness of Gödel’s incompleteness theorems. While there is no mention about the results in Husserl’s known exchanges with Hilbert, Weyl, or Zermelo, the most likely source about them for Husserl is Felix Kaufmann (1895–1949). Husserl’s interactions with Kaufmann show that Husserl may have learned about the results from him, but not necessarily so. Ultimately Husserl’s reading marks on Friedrich Waismann’s Einführung in das mathematische Denken: die Begriffsbildung der modernen Mathematik, 1936, show that he knew about them before his death in 1938.

Copyright
Corresponding author
*NORWEGIAN UNIVERSITY OF LIFE SCIENCES PO BOX 5003 1432 AAS, NORWAY E-mail: mirjahartimo@gmail.com
References
Hide All
van Atten M. (2015). Essays on Gödel’s Reception of Leibniz, Husserl, and Brouwer. Cham, Heidelberg, New York, Dordrecht, London: Springer.
van Atten M. & Kennedy J. ([2003] 2015). On the philosophical development of Kurt Gödel. In van Atten M. Essays on Gödel’s Reception of Leibniz, Husserl, and Brouwer. Cham, Heidelberg, New York, Dordrecht, London: Springer, pp. 95145.
Cavaillés J. (1970). On logic and the theory of science. In Kockelmans J. J. and Kisiel T. J., editors. Translated by Kisiel Theodore J.. Phenomenology and the Natural Sciences. Evanston: Northwestern University Press, pp. 353409.
Dawson J. W Jr.. (1984). The reception of Gödel’s incompleteness theorems. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1984, 253271.
Ebbinghaus H.-D. in cooperation with Volker Peckhaus (2007). Ernst Zermelo, An Approach to his Life and Work. Berlin, Heidelberg, New York: Springer.
Eley L. (1970). Einleitung des Herausgebers. In Husserl E. Philosophie der Arithmetik, mit ergänzenden Texten (1890–1901). Husserliana Band XII. Den Haag: Martinus Nijhoff, pp. XIII–XXVIX.
Feferman S. (2008). Lieber Herr Bernays!, Lieber Herr Gödel! Gödel on finitism, constructivity and Hilbert’s program. Dialectica, 62(2), 179203.
Gödel K. (1990). Remarks before the Princeton Bicentennial Conference on the problems of mathematics, 1946. In Feferman S., Dawson J. W. Jr, Kleene S. C., Moore G. H., Solovay R. M., and van Heijenoort J., editors. Collected Works, Volume II, Publications 1938–1974. Oxford: Clarendon Press, pp. 150153.
Hartimo M. (2007). Towards completeness: Husserl on theories of manifolds 1890–1901. Synthese, 156, 281310.
Hartimo M. (2016). Husserl on completeness, definitely. Synthese, doi: 10.1007/s11229-016-1278-7.
Hartimo M. (Forthcoming in 2017). Deeply Respectful Friendship: Husserl and Hilbert on the foundations of mathematics. In Centrone S., editor. Essays on Husserl’s Logic and Philosophy of Mathematics. Synthese Library. Springer.
Husserl E. (1950/1983). Ideen zu einer reinen Phänomenologie und phäneomenologischen Philosophie. Erstes Buch. Allgemeine Einführung in die reine Phänomenologie. Herausgegeben von Walter Biemel. Husserliana Band III. Haag: Martinus Nijhoff, 1950. English translation: Ideas Pertaining to a Pure Phenomenology and to a Phenomenological Philosophy. First book. General Introduction to a Pure Phenomenology. The Hague, Boston, Lancaster: Martinus Nijhoff, 1983.
Husserl E. (1974/1969). Formale and transzendentale Logik. Versuch einer Kritik der logischen Vernunft. Husserliana Band 17. The Hague, Netherlands: Martinus Nijhoff, 1974. English translation: Formal and Transcendental Logic, transl. by Dorion Cairns. The Hague: Martinus Nijhoff, 1969.
Husserl E. (1976/1970). Die Krisis der europäischen Wissenschaften und die transzendentale Phänomenologie. Eine Einleitung in die phänomenologische Philosophie. Herausgegeben von Walter Biemel. Husserliana Band VI. Haag: Martinus Nijhoff, 1976. English translation: The Crisis of European Sciences and Transcendental Phenomenology. An Introduction to Phenomenological Philosophy. Translated by David Carr. Evanston: Northwestern University Press, 1970.
Husserl E. (1994a). Briefwechsel. Husserliana Dokumente Band III, III. Die Göttinger Schule, edited by Schuhmann E. and Schuhmann K.. Dordrecht, Boston, London: Kluwer Academic Publishers.
Husserl E. (1994b). Briefwechsel. Husserliana Dokumente Band III, IV. Die Freiburger Schüler, edited by Schuhmann E. and Schuhmann K.. Dordrecht, Boston, London: Kluwer Academic Publishers.
Husserl E. (1994c). Briefwechsel. Husserliana Dokumente Band III, VII. Wissenschaftlerkorrespondenz, edited by Schuhmann E. and Schuhmann K.. Dordrecht, Boston, London: Kluwer Academic Publishers.
Husserl E. (1994d). Briefwechsel. Husserliana Dokumente Band III, IX. Familienbriefe, edited by Schuhmann E. and Schuhmann K.. Dordrecht, Boston, London: Kluwer Academic Publishers.
Kanamori A. (2004). Zermelo and set theory. The Bulletin of Symbolic Logic, 10(4), 487553.
Kaufmann F. (1978). The Infinite in Mathematics, Logico-mathematical Writings, edited by McGuinness B.. Translated by Foulkes P.. Dordrecht, Boston, London: D. Reidel Publishing Company.
Mancosu P. (1999). Between Vienna and Berlin: The immediate reception of Gödel’s incompleteness theorems. History and Philosophy of Logic, 20(1), 3345
Mancosu P. (2010). The Adventure of Reason. Interplay between Philosophy of Mathematics and Mathematical Logic 1900–1940. Oxford: Oxford University Press.
Miller P. J. (1982). Numbers in Presence and Absence: A Study of Husserl’s Philosophy of Mathematics. The Hague, Boston, London: Martinus Nijhoff Publishers.
Nagel E. (1978). Introduction. In Kaufmann F., and McGuiness B., editors. Translated by Foulkes P.. The Infinite in Mathematics, Logico-mathematical Writings. Dordrecht, Boston, London: D. Reidel Publishing Company.
Peckhaus V. (1990). Hilbertprogramm und Kritische Philosophie. Göttingen: Vandenhoeck und Ruprecht.
Schmit R. (1981). Husserls Philosophie der Mathematik. Platonistisce und konstruktivistische Momente in Husserls Mathematikbegriff. Bonn: Bouvier Verlag Herbert Grundmann.
Waismann F. (1936/1966). Einführung in das mathematische Denken: die Begriffsbildung der modernen Mathematik. Mit einem Vorwort von Karl Menger.Wien: Gerold. English translation by Benac Theodore J.; Introduction to Mathematical Thinking. New York: Harper & Row.
Wang H. (1987). Reflections on Kurt Gödel. Cambridge, Massachusetts, London, England: The MIT Press.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Review of Symbolic Logic
  • ISSN: 1755-0203
  • EISSN: 1755-0211
  • URL: /core/journals/review-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 50 *
Loading metrics...

Abstract views

Total abstract views: 337 *
Loading metrics...

* Views captured on Cambridge Core between 3rd July 2017 - 12th December 2017. This data will be updated every 24 hours.