Skip to main content Accessibility help



In a recent article (Mancosu, 2009), I have explored the historical, mathematical, and philosophical issues related to the new theory of numerosities. The theory of numerosities provides a context in which to assign ‘sizes’ to infinite sets of natural numbers in such a way as to preserve the part-whole principle, namely if a set A is properly included in B then the numerosity of A is strictly less than the numerosity of B. Numerosity assignments differ from the standard assignment of size provided by Cantor’s cardinality assignments. In this paper I generalize some worries, raised by Richard Heck, emerging from the theory of numerosities to a line of thought resulting in what I call a ‘good company’ objection to Hume’s Principle (HP). The paper is centered around five main parts. The first (§3) takes a historical look at nineteenth-century attributions of equality of numbers in terms of one-one correlation and argues that there was no agreement as to how to extend such determinations to infinite sets of objects. This leads to the second part (§4) where I show that there are countably-infinite many abstraction principles that are ‘good’, in the sense that they share the same virtues of HP (or so I claim) and from which we can derive the axioms of second-order arithmetic. All the principles I present agree with HP in the assignment of numbers to finite concepts but diverge from it in the assignment of numbers to infinite concepts. The third part (§5) connects this material to a debate on Finite Hume’s Principle between Heck and MacBride. The fourth part (§6) states the ‘good company’ objection as a generalization of Heck’s objection to the analyticity of HP based on the theory of numerosities. In the same section I offer a taxonomy of possible neo-logicist responses to the ‘good company’ objection. Finally, §7 makes a foray into the relevance of this material for the issue of cross-sortal identifications for abstractions.

Corresponding author
Hide All
Antonelli, A. (2010). Notions of invariance for abstraction principles. Philosophia Mathematica (III), 18, 276292.
Benci, V. (1995). I numeri e gli insiemi etichettati. Volume 261 of Conferenze del seminario di matematica dell’Universita’ di Bari. Bari: Laterza, pp. 29.
Benci, V., & Di Nasso, M. (2003). Numerosities of labeled sets: A new way of counting. Advances in Mathematics, 173, 5067.
Benci, V., Di Nasso, M., & Forti, M. (2006). An Aristotelean notion of size. Annals of Pure and Applied Logic, 143, 4353.
Bettazzi, R. (1887). Sul concetto di numero. Periodico di matematica per l’insegnamento secondario, 2, 97113 and 129–143.
Black, R. (2000). Nothing matters too much, or Wright is wrong. Analysis, 60, 229237.
Blanchette, P. (2012). Frege’s Conception of Logic. Oxford: Oxford University Press.
Bolzano, B. (1837). Wissenschaftslehre. Sulzbach: Seidel. Partial English translation in Bolzano (1973).
Bolzano, B. (1851). Paradoxien des Unendlichen. Leipzig: Meiner. See also Bolzano (1975a).
Bolzano, B. (1973). Theory of Science. Dordrecht: Reidel.
Bolzano, B. (1975a). Paradoxien des Unendlichen. Hamburg: Felix Meiner Verlag. Translated as Paradoxes of the Infinite, edited by Steele, D. A., London: Routledge and Kegan Paul and New Haven: Yale University Press, 1950. A more recent translation, which I use, is in Russ (2005).
Bolzano, B. (1975b). Einleitung zur Grössenlehre. Erste Begriffe der allgemeinen Grössenlehre, Gesamtausgabe, II A 7, edited by Jan Berg. Stuttgart-Bad Cannstatt: Friedrich Fromann Verlag.
Boolos, G. (1987). The consistency of Frege’s Foundations. In Thomson, J., editor. On Being and Saying: Essays in Honor of Richard Cartwright. Cambridge, MA: MIT Press, pp. 320. Reprinted in Boolos (1998, pp. 183–201).
Boolos, G. (1990). The standard equality of numbers. In Boolos, G., editor. Meaning and Method: Essays in Honor of Hilary Putnam. Cambridge: Cambridge University Press, pp. 261277. Reprinted in Boolos (1998, pp. 202–219).
Boolos, G. (1996). On the proof of Frege’s theorem. In Morton, A. and Stich, S. P., editors. Paul Benacerraf and his Critics. Cambridge, MA: Blackwell, pp. 143159. Reprinted in Boolos (1998, pp. 275–290).
Boolos, G. (1997). Is Hume’s principle analytic? In Heck (1997b, pp. 245–261). Reprinted in Boolos (1998, pp. 301–314).
Boolos, G. (1998). Logic, Logic, and Logic. Cambridge, MA: Harvard University Press.
Burali Forti, C. (1894). Logica Matematica. Milano: Hoepli.
Cantor, G. (1883). Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Leipzig: Teubner.
Clark, P. (2004). Frege, neo-logicism and applied mathematics. In Stadler, F., editor. Induction and Deduction in the Sciences. Dordrecht: Kluwer, pp. 169183. Reprinted in Cook (2007, pp. 45–60).
Cook, R. (2002). The state of the economy: Neo-logicism and inflation. Philosophia Mathematica (III), 10, 4366.
Cook, R., editor. (2007). The Arché Papers on the Mathematics of Abstraction. Dordrecht: Springer.
Cook, R. (2012). Conservativeness, stability, and abstraction. British Journal for the Philosophy of Science, 63, 673696.
Cook, R., & Ebert, P. (2005). Abstraction and identity. Dialectica, 59(2), 121139.
Couturat, L. (1896). De l’Infini Mathématique. Paris: Alcan.
Demopoulos, W. (2003). On the philosophical interest of Frege arithmetic. Philosophical Books, 44, 220228. Reprinted in Cook (2007, 105–115).
Dummett, M. (1998). Neo-Fregeans; in bad company? In Schirn, M., editor. The Philosophy of Mathematics Today. New York: Clarendon Press, pp. 369387.
Dummett, M. (1991). Frege. Philosophy of Mathematics. Cambridge, MA: Harvard University Press.
Ewald, W., editor. (1996). From Kant to Hilbert: A Source Book in the Foundations of Mathematics, Volume 2. Oxford: Oxford University Press.
Fine, K. (2002). The Limits of Abstraction. Oxford: Oxford University Press.
Frege, G. (1884). Die Grundlagen der Arithmetik. Breslau: Koebner. Translated into English by J. Austin as The Foundations of Arithmetic (second edition). New York: Harper, 1960.
Frege, G. (1893). Grundgesetze der Arithmetik I. Jena: H. Pohle. Reprinted by Hildesheim: G. Olms.
Hale, R. (1997). Grundlagen §64. Proceedings of the Aristotelian Society, 97, 243261. Reprinted in Hale and Wright ( 2001a, pp. 90116).
Hale, R. & Wright, C. (2001a). The Reason’s Proper Study. Oxford: Clarendon Press.
Hale, R. & Wright, C. (2001b). “To Bury Caesar …”. In Wright & Hale (2001a, pp. 335396).
Hale, B. & Wright, C. (2009). Focus restored: comments on John MacFarlane. In Linnebo (2009a, pp. 457–482).
Heck, R. (1997a). Finitude and Hume’s principle. Journal of Philosophical Logic, 26, 589617. Reprinted with a postscript in Heck (2011, pp. 237–266).
Heck, R. (1997b). Logic, Language and Thought. Oxford: Oxford University Press.
Heck, R. (2000). Cardinality, counting, and equinumerosity. Notre dame Journal of Formal Logic, 41, 187209. Reprinted in Heck (2011, pp. 156–179).
Heck, R. (2011). Frege’s Theorem. Oxford: Oxford University Press.
Helmholtz, H. (1887). Zählen und Messen, Erkenntnistheoretisch betrachtet. Philosophische Aufsätze, Eduard Zeller zu seinem fünfzigjährigen Doctorjubiläum gewidmet. Leipzig: Fues’ Verlag, pp. 1752. English translation (Counting and Measuring) in Ewald 1996, vol. II, pp. 727–752.
Husserl, E. (1891). Philosophie der Arithmetik. Halle: Pfeffer.
Kanamori, A. (1997). The mathematical import of Zermelo’s well-ordering theorem. The Bulletin of Symbolic Logic, 3, 281311.
Kossak, E. (1872). Die Elemente der Arithmetik. Berlin.
Linnebo, Ø., editor. (2009a). The Bad Company Problem. Synthese, 170 (Special Issue no.3).
Linnebo, Ø. (2009b). Introduction. In Linnebo (2009a, pp. 321–329).
MacBride, F. (2000). On finite Hume. Philosophia Mathematica, 8, 150159.
MacBride, F. (2002). Could nothing matter? Analysis, 62, 125135. Reprinted in Cook (2007, pp. 95–104).
MacBride, F. (2003). Speaking with shadows: A study of neo-logicism. British Journal for Philosophy of Science, 54, 103163.
Mancosu, P. (2009). Measuring the size of infinite collections of natural numbers: Was Cantor’s theory of infinite number inevitable? Review of Symbolic Logic, 2, 612646.
Peano, G. (1891). Sul concetto di numero. Rivista di Matematica, 1, 87102 and 256–267.
Rumfitt, I. (2001). Hume’s principle and the number of objects. Nous, 35(4), 515541.
Russ, S. (2005). The Mathematical Works of Bernard Bolzano. Oxford: Oxford University Press.
Schröder, E. (1873). Lehrbuch der Arithmetik und Algebra. Leipzig: Teubner.
Shapiro, S., & Ebert, P. (2009). The good, the bad, and the ugly. In Linnebo (2009a,pp. 415–441).
Shapiro, S., & Weir, A. (2000). ‘Neologicist’ logic is not epistemically innocent. Philosophia Mathematica, 8, 160189.
Stolz, O. (1885). Vorlesungen über allgemeine Arithmetik. Leipzig: Teubner.
Tappenden, J. (forthcoming). Philosophy and the Emergence of Contemporary Mathematics : Frege in his Mathematical Context. Oxford: Oxford University Press.
Tennant, N. (2013). Logicism and neologicism. In Zalta, E., editor. Stanford Encyclopedia of Philosophy.
Textor, M. (forthcoming). Concept Words, Predicates and ‘a great faultline in Frege’s philosophy’. Version dated March 2012.
Weir, A. (2004). Neo-Fregeanism: An embarrassment of riches. Notre Dame Journal of Formal Logic, 44, 1348. Reprinted in Cook (2007, pp. 383–420).
Wright, C. (1983). Frege’s Conception of Numbers as Objects. Aberdeen: Aberdeen University Press.
Wright, C. (1997). Is Hume’s principle analytic? In Heck (1997b, pp. 201–244). Reprinted in Hale & Wright (2001a, pp. 272–306).
Wright, C. (forthcoming). Abstraction and epistemic entitlement: On the epistemological status of Hume’s principle. In Ebert, P. and Rossberg, M., editors. Abstractionism. Oxford: Oxford University Press.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Review of Symbolic Logic
  • ISSN: 1755-0203
  • EISSN: 1755-0211
  • URL: /core/journals/review-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed