Antonelli, A. (2010). Notions of invariance for abstraction principles. Philosophia Mathematica (III), 18, 276–292.

Benci, V. (1995). I numeri e gli insiemi etichettati. Volume 261 of Conferenze del seminario di matematica dell’Universita’ di Bari. Bari: Laterza, pp. 29.

Benci, V., & Di Nasso, M. (2003). Numerosities of labeled sets: A new way of counting. Advances in Mathematics, 173, 50–67.

Benci, V., Di Nasso, M., & Forti, M. (2006). An Aristotelean notion of size. Annals of Pure and Applied Logic, 143, 43–53.

Bettazzi, R. (1887). Sul concetto di numero. Periodico di matematica per l’insegnamento secondario, 2, 97–113 and 129–143.

Black, R. (2000). Nothing matters too much, or Wright is wrong. Analysis, 60, 229–237.

Blanchette, P. (2012). Frege’s Conception of Logic. Oxford: Oxford University Press.

Bolzano, B. (1837). Wissenschaftslehre. .

Bolzano, B. (1851). Paradoxien des Unendlichen. Leipzig: Meiner. .

Bolzano, B. (1973). Theory of Science. Dordrecht: Reidel.

Bolzano, B. (1975a). Paradoxien des Unendlichen. .

Bolzano, B. (1975b). Einleitung zur Grössenlehre. Erste Begriffe der allgemeinen Grössenlehre, Gesamtausgabe, II A 7, edited by .

Boolos, G. (1987). The consistency of Frege’s *Foundations*. In Thomson, J., editor. On Being and Saying: Essays in Honor of Richard Cartwright. Cambridge, MA: MIT Press, pp. 3–20. .

Boolos, G. (1990). The standard equality of numbers. In Boolos, G., editor. Meaning and Method: Essays in Honor of Hilary Putnam. Cambridge: Cambridge University Press, pp. 261–277. .

Boolos, G. (1996). On the proof of Frege’s theorem. In Morton, A. and Stich, S. P., editors. Paul Benacerraf and his Critics. Cambridge, MA: Blackwell, pp. 143–159. .

Boolos, G. (1997). .

Boolos, G. (1998). Logic, Logic, and Logic. Cambridge, MA: Harvard University Press.

Burali Forti, C. (1894). Logica Matematica. Milano: Hoepli.

Cantor, G. (1883). Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Leipzig: Teubner.

Clark, P. (2004). Frege, neo-logicism and applied mathematics. In Stadler, F., editor. Induction and Deduction in the Sciences. Dordrecht: Kluwer, pp. 169–183. .

Cook, R. (2002). The state of the economy: Neo-logicism and inflation. Philosophia Mathematica (III), 10, 43–66.

Cook, R., editor. (2007). The Arché Papers on the Mathematics of Abstraction. Dordrecht: Springer.

Cook, R. (2012). Conservativeness, stability, and abstraction. British Journal for the Philosophy of Science, 63, 673–696.

Cook, R., & Ebert, P. (2005). Abstraction and identity. Dialectica, 59(2), 121–139.

Couturat, L. (1896). De l’Infini Mathématique. Paris: Alcan.

Demopoulos, W. (2003). On the philosophical interest of Frege arithmetic. Philosophical Books, 44, 220–228. .

Dummett, M. (1998). Neo-Fregeans; in bad company? In Schirn, M., editor. The Philosophy of Mathematics Today. New York: Clarendon Press, pp. 369–387.

Dummett, M. (1991). Frege. Philosophy of Mathematics. Cambridge, MA: Harvard University Press.

Ewald, W., editor. (1996). From Kant to Hilbert: A Source Book in the Foundations of Mathematics, Volume 2. Oxford: Oxford University Press.

Fine, K. (2002). The Limits of Abstraction. Oxford: Oxford University Press.

Frege, G. (1884). *Die Grundlagen der Arithmetik*. Breslau: Koebner. Translated into English by J. Austin as The Foundations of Arithmetic (second edition). New York: Harper, .

Frege, G. (1893). Grundgesetze der Arithmetik I. Jena: H. Pohle. .

Hale, R. (1997). Grundlagen §64. Proceedings of the Aristotelian Society, 97, 243–261. Reprinted in Hale and Wright ( 2001a, pp. 90–116).

Hale, R. & Wright, C. (2001a). The Reason’s Proper Study. Oxford: Clarendon Press.

Hale, R. & Wright, C. (2001b). “”. In Wright & Hale (2001a, pp. 335–396).

Hale, B. & Wright, C. (2009). .

Heck, R. (1997a). Finitude and Hume’s principle. Journal of Philosophical Logic, 26, 589–617. .

Heck, R. (1997b). Logic, Language and Thought. Oxford: Oxford University Press.

Heck, R. (2000). Cardinality, counting, and equinumerosity. Notre dame Journal of Formal Logic, 41, 187–209. .

Heck, R. (2011). Frege’s Theorem. Oxford: Oxford University Press.

Helmholtz, H. (1887). Zählen und Messen, Erkenntnistheoretisch betrachtet. *Philosophische Aufsätze, Eduard Zeller zu seinem fünfzigjährigen Doctorjubiläum gewidmet*. Leipzig: Fues’ Verlag, pp. 17–52. .

Husserl, E. (1891). Philosophie der Arithmetik. Halle: Pfeffer.

Kanamori, A. (1997). The mathematical import of Zermelo’s well-ordering theorem. The Bulletin of Symbolic Logic, 3, 281–311.

Kossak, E. (1872). Die Elemente der Arithmetik. Berlin.

Linnebo, Ø., editor. (2009a). The Bad Company Problem. Synthese, .

Linnebo, Ø. (2009b). .

MacBride, F. (2000). On finite Hume. Philosophia Mathematica, 8, 150–159.

MacBride, F. (2002). Could nothing matter? Analysis, 62, 125–135. .

MacBride, F. (2003). Speaking with shadows: A study of neo-logicism. British Journal for Philosophy of Science, 54, 103–163.

Mancosu, P. (2009). Measuring the size of infinite collections of natural numbers: Was Cantor’s theory of infinite number inevitable? Review of Symbolic Logic, 2, 612–646.

Peano, G. (1891). Sul concetto di numero. Rivista di Matematica, 1, 87–102 and 256–267.

Rumfitt, I. (2001). Hume’s principle and the number of objects. Nous, 35(4), 515–541.

Russ, S. (2005). The Mathematical Works of Bernard Bolzano. Oxford: Oxford University Press.

Schröder, E. (1873). Lehrbuch der Arithmetik und Algebra. Leipzig: Teubner.

Shapiro, S., & Ebert, P. (2009). .

Shapiro, S., & Weir, A. (2000). ‘Neologicist’ logic is not epistemically innocent. Philosophia Mathematica, 8, 160–189.

Stolz, O. (1885). Vorlesungen über allgemeine Arithmetik. Leipzig: Teubner.

Tappenden, J. (forthcoming). Philosophy and the Emergence of Contemporary Mathematics : Frege in his Mathematical Context. Oxford: Oxford University Press.

Tennant, N. (2013). Logicism and neologicism. In Zalta, E., editor. Stanford Encyclopedia of Philosophy.

Textor, M. (forthcoming). .

Weir, A. (2004). Neo-Fregeanism: An embarrassment of riches. Notre Dame Journal of Formal Logic, 44, 13–48. .

Wright, C. (1983). Frege’s Conception of Numbers as Objects. Aberdeen: Aberdeen University Press.

Wright, C. (1997). .

Wright, C. (forthcoming). Abstraction and epistemic entitlement: On the epistemological status of Hume’s principle. In Ebert, P. and Rossberg, M., editors. Abstractionism. Oxford: Oxford University Press.