Skip to main content Accessibility help
×
Home

THE LOGIC OF LEIBNIZ’S GENERALES INQUISITIONES DE ANALYSI NOTIONUM ET VERITATUM

  • MARKO MALINK (a1) and ANUBAV VASUDEVAN (a2)

Abstract

The Generales Inquisitiones de Analysi Notionum et Veritatum is Leibniz’s most substantive work in the area of logic. Leibniz’s central aim in this treatise is to develop a symbolic calculus of terms that is capable of underwriting all valid modes of syllogistic and propositional reasoning. The present paper provides a systematic reconstruction of the calculus developed by Leibniz in the Generales Inquisitiones. We investigate the most significant logical features of this calculus and prove that it is both sound and complete with respect to a simple class of enriched Boolean algebras which we call auto-Boolean algebras. Moreover, we show that Leibniz’s calculus can reproduce all the laws of classical propositional logic, thus allowing Leibniz to achieve his goal of reducing propositional reasoning to algebraic reasoning about terms.

Copyright

Corresponding author

*DEPARTMENT OF PHILOSOPHY NEW YORK UNIVERSITY 5 WASHINGTON PLACE NEW YORK, NY 10003 USA E-mail: mm7761@nyu.edu
DEPARTMENT OF PHILOSOPHY UNIVERSITY OF CHICAGO 1115 EAST 58th STREET CHICAGO, IL 60637 USA E-mail: anubav@uchicago.edu

References

Hide All
Adams, R. M. (1994). Leibniz: Determinist, Theist, Idealist. New York: Oxford University Press.
Arndt, H. W. (1971). Methodo scientifica pertractatum: Mos geometricus und Kalkülbegriff in der philosophischen Theorienbildung des 17. und 18. Jahrhunderts. Berlin: de Gruyter.
Badesa, C. (2004). The Birth of Model Theory: Löwenheim’s Theorem in the Frame of the Theory of Relatives. Princeton: Princeton University Press.
Barnes, J. (1983). Terms and sentences. Proceedings of the British Academy, 69, 279326.
Bassler, O. B. (1998). Leibniz on intension, extension, and the representation of syllogistic inference. Synthese, 116, 117139.
Birkhoff, G. (1935). On the structure of abstract algebras. Mathematical Proceedings of the Cambridge Philosophical Society, 31, 433454.
Bonevac, D., & Dever, J. (2012). A history of the connectives. In Gabbay, D. M., Pelletier, F. J., & Woods, J., editors. Logic: A History of its Central Concepts. Handbook of the History of Logic, Vol. 11. Amsterdam: Elsevier, pp. 175233.
Boole, G. (1854). An Investigation of the Laws of Thought, on Which Are Founded the Mathematical Theories of Logic and Probabilities. London: Walton and Maberley.
Burkhardt, H. (1974). Anmerkungen zur Logik, Ontologie und Semantik bei Leibniz. Studia Leibnitiana, 6, 4968.
Byrne, L. (1946). Two brief formulations of Boolean algebra. Bulletin of the American Mathematical Society, 52, 269272.
Castañeda, H.-N. (1974). Leibniz’s concepts and their coincidence salva veritate. Noûs, 8, 381398.
Castañeda, H.-N. (1976). Leibniz’s syllogistico-propositional calculus. Notre Dame Journal of Formal Logic, 17, 481500.
Castañeda, H.-N. (1990). Leibniz’s complete propositional logic. Topoi, 9, 1528.
Couturat, L. (1901). La logique de Leibniz. Paris: Félix Alcan.
Cover, J. A., & O’Leary-Hawthorne, J. (1999). Substance and Individuation in Leibniz. Cambridge: Cambridge University Press.
Doull, F. A. (1991). Leibniz’s logical system of 1686–1690. Theoria, 6, 928.
Dutens, L. (1768). Gothofredi Guillelmi Leibnitii opera omnia. Tomus quintus, continens opera philologica. Geneva: Fratres de Tournes.
Goldblatt, R. (2006). Mathematical modal logic: A view of its evolution. In Gabbay, D. M. & Woods, J., editors. Logic and the Modalities in the Twentieth Century. Handbook of the History of Logic, Vol. 7. Amsterdam: Elsevier, pp. 198.
Hailperin, T. (2004). Algebraical logic 1685–1900. In Gabbay, D. M. & Woods, J., editors. The Rise of Modern Logic: From Leibniz to Frege. Handbook of the History of Logic, Vol. 3. Amsterdam: Elsevier, pp. 323388.
Halmos, P. R. (1962). Algebraic Logic. New York: Chelsea Publishing Company.
Heinekamp, A. (1976). Sprache und Wirklichkeit nach Leibniz. In Parret, H., editor. History of Linguistic Thought and Contemporary Linguistics. Berlin: de Gruyter, pp. 518570.
Houser, N. (1991). Peirce and the law of distribution. In Drucker, T., editor. Perspectives on the History of Mathematical Logic. Boston: Birkhäuser, pp. 1032.
Huntington, E. V. (1904). Sets of independent postulates for the algebra of logic. Transactions of the American Mathematical Society, 5, 288309.
Ishiguro, H. (1972). Leibniz’s Philosophy of Logic and Language. Ithaca, NY: Cornell University Press.
Ishiguro, H. (1990). Leibniz’s Philosophy of Logic and Language (second edition). Cambridge: Cambridge University Press.
Juniewicz, M. (1987). Leibniz’s modal calculus of concepts. In Srzednicki, J., editor. Initiatives in Logic. Dordrecht: Kluwer, pp. 3651.
Kauppi, R. (1960). Über die Leibnizsche Logik: Mit besonderer Berücksichtigung des Problems der Intension und der Extension. Acta Philosophica Fennica, Vol. 12. Helsinki: Societas Philosophica.
Leibniz, G. W. (1857–90). Die philosophischen Schriften von Gottfried Wilhelm Leibniz, 7 vols. Ed. by Gerhardt, C. I.. Berlin: Weidmannsche Buchhandlung.
Leibniz, G. W. (1903). Opuscules et fragments inédits de Leibniz. L. Couturat, editor. Paris: Félix Alcan.
Leibniz, G. W. (1999). Sämtliche Schriften und Briefe, vol. VI4A. Ed. by the Berlin Brandenburgische Akademie der Wissenschaften and the Akademie der Wissenschaften in Göttingen. Berlin: Akademie Verlag.
Lenzen, W. (1983). Zur extensionalen und “intensionalen” Interpretation der Leibnizschen Logik. Studia Leibnitiana, 15, 129148.
Lenzen, W. (1984a). Leibniz und die Boolesche Algebra. Studia Leibnitiana, 16, 187203.
Lenzen, W. (1984b). “Unbestimmte Begriffe” bei Leibniz. Studia Leibnitiana, 16, 126.
Lenzen, W. (1986). ‘Non est’ non est ‘est non’. Zu Leibnizens Theorie der Negation. Studia Leibnitiana, 18, 137.
Lenzen, W. (1987). Leibniz’s calculus of strict implication. In Srzednicki, J., editor. Initiatives in Logic. Dordrecht: Kluwer, pp. 135.
Lenzen, W. (2004). Leibniz’s logic. In Gabbay, D. M. & Woods, J., editors. The Rise of Modern Logic: From Leibniz to Frege. Handbook of the History of Logic, Vol. 3. Amsterdam: Elsevier, pp. 183.
Lenzen, W. (2005). Leibniz on alethic and deontic modal logic. In Berlioz, D. & Nef, F., editors. Leibniz et les Puissance du Langage. Paris: Vrin, pp. 341362.
Levey, S. (2011). Logical theory in Leibniz. In Look, B. C., editor. The Continuum Companion to Leibniz. New York: Continuum, pp. 110135.
Lewis, C. I. (1918). A Survey of Symbolic Logic. Berkeley: University of California Press.
Lewis, C. I., & Langford, C. H. (1932). Symbolic Logic. New York: Century.
Mates, B. (1986). The Philosophy of Leibniz: Metaphysics and Language. New York: Oxford University Press.
Mugnai, M. (2005). Review of Wolfgang Lenzen, Calculus Universalis: Studien zur Logik von G. W. Leibniz. The Leibniz Review, 15, 169181.
Mugnai, M. (2008). Gottfried Wilhelm Leibniz: Ricerche generali sull’analisi delle nozioni e delle verità e altri scritti di logica. Pisa: Edizioni della Normale.
Parkinson, G. H. R. (1965). Logic and Reality in Leibniz’s Metaphysics. Oxford: Clarendon Press.
Parkinson, G. H. R. (1966). Gottfried Wilhelm Leibniz: Logical Papers. A Selection. Oxford: Clarendon Press.
Peckhaus, V. (1997). Logik, Mathesis universalis und allgemeine Wissenschaft. Leibniz und die Wiederentdeckung der formalen Logik im 19. Jahrhundert. Berlin: Akademie Verlag.
Peirce, C. S. (1880). On the algebra of logic. American Journal of Mathematics, 3, 1557.
Poser, H. (1979). Signum, notio und idea. Elemente der Leibnizschen Zeichentheorie. Zeitschrift für Semiotik, 1, 309324.
Rauzy, J.-B. (1998). G. W Leibniz: Recherches générales sur l’analyse des notions et des vérités, 24 thèses métaphysiques et autres textes logiques et métaphysiques. Paris: PUF.
Rescher, N. (1954). Leibniz’s interpretation of his logical calculi. Journal of Symbolic Logic, 19, 113.
Rodriguez-Pereyra, G. (2013). The principles of contradiction, sufficient reason, and identity of indiscernibles. In Antognazza, M. R., editor. Oxford Handbooks Online: The Oxford Handbook of Leibniz. Oxford: Oxford University Press.
Rosser, J. B. (1953). Logic for Mathematicians. New York: McGraw-Hill.
Schupp, F. (1993). Gottfried Wilhelm Leibniz: Allgemeine Untersuchungen über die Analyse der Begriffe und Wahrheiten (second edition). Hamburg: Felix Meiner.
Swoyer, C. (1994). Leibniz’s calculus of real addition. Studia Leibnitiana, 26, 130.
Swoyer, C. (1995). Leibniz on intension and extension. Noûs, 29, 96114.
van Rooij, R. (2014). Leibnizian intensional semantics for syllogistic reasoning. In Ciuni, R., Wansing, H., & Willkommen, C., editors. Recent Trends in Philosophical Logic. Heidelberg: Springer, pp. 179194.

THE LOGIC OF LEIBNIZ’S GENERALES INQUISITIONES DE ANALYSI NOTIONUM ET VERITATUM

  • MARKO MALINK (a1) and ANUBAV VASUDEVAN (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed