Skip to main content
×
Home
    • Aa
    • Aa

A MACHINE-ASSISTED PROOF OF GÖDEL’S INCOMPLETENESS THEOREMS FOR THE THEORY OF HEREDITARILY FINITE SETS

  • LAWRENCE C. PAULSON (a1)
Abstract
Abstract

A formalization of Gödel’s incompleteness theorems using the Isabelle proof assistant is described. This is apparently the first mechanical verification of the second incompleteness theorem. The work closely follows Świerczkowski (2003), who gave a detailed proof using hereditarily finite set theory. The adoption of this theory is generally beneficial, but it poses certain technical issues that do not arise for Peano arithmetic. The formalization itself should be useful to logicians, particularly concerning the second incompleteness theorem, where existing proofs are lacking in detail.

Copyright
Corresponding author
*COMPUTER LABORATORY UNIVERSITY OF CAMBRIDGE CAMBRIDGE, CB3 0FD, UK E-mail: lp15@cam.ac.uk
References
Hide All
Boolos G. S. (1993). The Logic of Provability. Cambridge: Cambridge University Press.
de Bruijn N. G. (1972). Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser Theorem. Indagationes Mathematicae, 34, 381392.
Feferman S., editor (1986). Kurt Gödel: Collected Works, Vol. I, Oxford, UK: Oxford University Press.
Franzén T. (2005). Gödel’s Theorem: An Incomplete Guide to Its Use and Abuse. Wellesley, Mass: A K Peters.
Gödel K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, 38(1), 173198.
Kirby L. (2007). Addition and multiplication of sets. Mathematical Logic Quarterly,53(1), 5265.
Nipkow T., Paulson L. C., & Wenzel M. (2002). Isabelle/HOL: A Proof Assistant for Higher-Order Logic. Lecture Notes in Computer Science vol. 2283, Berlin: Springer.
O’Connor R. (2005). Essential incompleteness of arithmetic verified by Coq. In Hurd J. &Melham T., editors. TPHOLs, Lecture Notes in Computer Science vol. 3603, Berlin: Springer, pp. 245260.
O’Connor R. S. S. (2009). Incompleteness & Completeness: Formalizing Logic and Analysis in Type Theory. Ph. D. Thesis, Radboud University Nijmegen.
Paulson L. C. (2013). A mechanised proof of Gödel’s incompleteness theorems using Nominal Isabelle. Submitted for publication.
Shankar N. (1986). Proof-checking Metamathematics. Ph. D. Thesis, University of Texas , Austin.
Shankar N. (1994). Metamathematics, Machines, and Gödel’s Proof. Cambridge : Cambridge University Press.
Shankar N. (2013). Shankar, Boyer, Church-Rosser and de Bruijn indices. E-mail.
Świerczkowski S. (2003). Finite sets and Gödel’s incompleteness theorems. Dissertationes Mathematicae, 422, 158. Available from: http://journals.impan.gov.pl/dm/Inf/422-0-1.html.
Urban C., & Kaliszyk C. (2012). General bindings and alpha-equivalence in Nominal Isabelle. Logical Methods in Computer Science, 8(2:14), 135.
Wenzel M. (2007). Isabelle/Isar — a generic framework for human-readable proof documents. In Matuszewski R. & Zalewska A., editors. From Insight to Proof — Festschrift in Honour of Andrzej Trybulec, Studies in Logic, Grammar, and Rhetoric, vol. 10(23), University of Białystok.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Review of Symbolic Logic
  • ISSN: 1755-0203
  • EISSN: 1755-0211
  • URL: /core/journals/review-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 17 *
Loading metrics...

Abstract views

Total abstract views: 174 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th October 2017. This data will be updated every 24 hours.