Skip to main content
×
Home

MATRIX-BASED LOGIC FOR APPLICATION IN PHYSICS

  • PAUL WEINGARTNER (a1)
Abstract

The paper offers a matrix-based logic (relevant matrix quantum physics) for propositions which seems suitable as an underlying logic for empirical sciences and especially for quantum physics. This logic is motivated by two criteria which serve to clean derivations of classical logic from superfluous redundancies and uninformative complexities. It distinguishes those valid derivations (inferences) of classical logic which contain superfluous redundancies and complexities and are in this sense “irrelevant” from those which are “relevant” or “nonredundant” in the sense of allowing only the most informative consequences in the derivations. The latter derivations are strictly valid in RMQ, whereas the former are only materially valid. RMQ is a decidable matrix calculus which possesses a semantics and has the finite model property. It is shown in the paper how RMQ by its strictly valid derivations can avoid the difficulties with commensurability, distributivity, and Bell's inequalities when it is applied to quantum physics.

Copyright
Corresponding author
*DEPARTMENT OF PHILOSOPHY UNIVERSITY OF SALZBURG AND INSTITUT FÜR WISSENSCHAFTSTHEORIE SALZBURG, AUSTRIA, A-5020, E-mail:paul.weingartner@sbg.ac.at
References
Hide All
Aerts D. (1985). A possible explanation for the probabilities of quantum mechanics and example of a macroscopical system that violates Bell inequalities. In Mittelstaedt P., and Stachow E. W., editors. Recent Developments in Quantum Logics. Mannheim, Germany: B.I. Wissenschaftsverlag. pp. 235249.
Aerts D., & Aerts S. (2005). Towards a general operational and realistic framework for quantum mechanics and relativity theory. In Elitzur A., Dolev S., and Kolenda N., editors. Quo Vadis Quantum Mechanics? Heidelberg, Germany: Springer, pp. 153207.
Bell J. (1987). Speakable and Unspeakable in Quantum Mechanics. Cambridge, UK: Cambridge University Press.
Beltrametti E. G., & Maczynski M. J. (1991). On the characterization of classical and non-classical probabilities. Journal of Mathematical Physics, 32, 12801286.
Birkhoff G., & von Neumann J. (1936). The logic of quantum mechanics. Annals of Mathematics, 37, 823843.
Cattaneo G., Dalla Chiara M. L., & Giuntini R. (2004). An unsharp quantum logic from quantum computation. In Weingartner P., editor. Alternative Logics. Do Sciences Need Them? Heidelberg, Germany: Springer. pp. 323338.
Czermak J. (1981). Eine endliche Axiomatisierung von SS1M. In Morscher E., Neumaier O., and Zecha G., editors. Philosophie als Wissenschaft/ [Essays in Scientific Philosophy]. Comes, Bad Reichenhall. pp. 245258.
Da Costa N. (1974). On a theory of inconsistent formal systems. Notre Dame Journal of Formal Logic, 15, 497510.
Dalla Chiara M. L. (1977). Quantum logic and physical modalities. Journal of Philosohical Logic, 6, 391404.
Dalla Chiara M. L., & Guintini R. (2001). Quantum Logics. arXiv: quant-ph/0101028 v2.
Dalla Chiara M. L., Guintini R., & Greechie R. (2004). Reasoning in Quantum Theory, Sharp and Unsharp Quantum Logics. Dordrecht, The Netherlands: Kluwer.
D’Espagnat B. (1979). A la Recherche du Réel. Paris, France: Gauthier-Villars.
Finch P. D. (1970). Quantum logic as an implication algebra. Bulletin of the Australian Mathematical Society, 2, 101106.
Finkelstein D. (1979). Matter, space and logic. In Hooker C. A., editor. The Logico-Algebraic Approach to Quantum Mechanics. Berlin: Springer, Vol. II. pp. 123139.
Goldblatt R. I. (1974). Semantic analysis of orthologic. Journal of Philosophical Logic, 3, 1935.
Mittelstaedt P. (1972). On the interpretation of the lattice of subspaces of Hilbert space as a propositional calculus. Zeitschrift für Naturforschung, 27a, 13581362.
Mittelstaedt P. (1978). Quantum Logic. Dordrecht, The Netherlands: Reidel.
Mittelstaedt P. (1998). The Interpretation of Quantum Mechanics and the Measurement Process. Cambridge, UK: Cambridge University Press.
Mittelstaedt P. (2004). Does quantum physics require a new logic? In Weingartner P., editor. Alternative Logics. Do Sciences Need Them? Heidelberg, Germany: Springer. pp. 269284.
Mittelstaedt P., & Stachow E. W., editors (1985). Recent Developments in Quantum Logics. Mannheim, Germany: B.I. Wissenschaftsverlag.
Mittelstaedt P., & Weingartner P. (2005). Laws of Nature. Heidelberg, Germany: Springer.
Piron C. (1964). Axiomatique quantique. Helvetica Physica Acta, 37, 439468.
Pitowsky I. (1989). Quantum Probability-Quantum Logic. Lecture Notes in Physics, Vol. 321. Berlin, Germany: Springer.
Priest G. (2000). Motivation of paraconsistency: The slippery slope from classical logic to dialethism. In Batens D., Morfensen Ch., Priest G., and van Bendegem J. P., editors. Frontiers in Paraconsistent Logics. London: Research Studies Press, pp.223233.
Schurz G. (1991a). Relevant deduction. Erkenntnis, 35, 391437.
Schurz G. (1991b). Relevant deductive inference: Criteria and logics. In Schurz G., and Dorn G., editors. Advances in Scientific Philosophy. Essays in Honour of Paul Weingartner. Amsterdam, The Netherlands: Rodopi, pp. 5784.
Schurz G., & Weingartner P. (1987) Versimilitude defined by relevant consequence-elements. A new reconstruction of Popper’s original idea. In Kuipers T., editor. What is Closer-to-the-Truth? Amsterdam, The Netherland: Rodopi, pp. 4777.
Schurz G., & Weingartner P. (2008). Zwart and Franssen’s impossibility theorem holds for possible-world-accounts but not for consequence-accounts to versimilitude. Synthese. Forthcoming.
Solèr M. P. (1995). Characterisation of Hilbert spaces by orthomudular lattices. Communications in Algebra, 23(1), 219243.
Stachow E. W. (1976). Completeness of quantum logic. Journal of Philosophical Logic, 5, 237280.
Stachow E. W. (1978). Quantum logical calculi and lattice structures. Journal of Philosophical Logic, 7, 347386.
Stachow E. W. (2004). Experimental approach to quantum-logical connectives. In Weingartner P., editor. Alternative Logics. Do Sciences Need Them? Heidelberg, Germany: Springer. pp. 285298.
Takeuti G. (1987). Proof Theory. Amsterdam: North Holland.
Tarski A. (1956). Logic Semantics and Metamathematics. Oxford, UK: Oxford University Press.
Weingartner P. (1968). Modal logics with two kinds of necessity and possibility. Notre Dame Journal of Formal Logic, 9(2), 97159.
Weingartner P. (1985). A simple relevance-criterion for natural language and its semantics. In Dorn G., and Weingartner P., editors. Foundations of Logic and Linguistics: Problems and their Solutions. New York: Plenum Press. pp. 563575.
Weingartner P. (2000a). Basic Questions on Truth (Series Episteme 24). Dordrecht, The Netherlands: Kluwer.
Weingartner P. (2000b). Reasons for filtering classical logic. In Batens D., Morfensen Ch., Priest G., and van Bendegem J. P., editors. Frontiers in Paraconsistent Logics. London: Research Studies Press, pp. 315327.
Weingarnter P. (2001). Applications of logic outside logic and mathematics: Do such applications force us to deviate from classical logic?! In Stelzner W., editor. Zwischen traditioneller und moderner Logik. Paderborn: Mentis, pp. 5364.
Weingartner P., editor (2004a). Alternative Logics. Do Sciences Need Them? Heidelberg, Germany: Springer.
Weingartner P. (2004b). Reasons from science for limiting classical logic. In Weingartner P., editor. Alternative Logics. Do Sciences Need Them? Heidelberg, Germany: Springer. pp. 233248.
Weingartner P., & Schurz G. (1986). Paradoxes solved by simple relevance criteria. Logique et Analyse, 113, 340.
Zeilinger A. (1992). Physik und Wirklichkeit. Neuere Entwicklungen zum Einstein-Podolsk-Rosen Paradoxon. In Reichel H. C., and Prat de la Riba E., editors. Naturwissenschaft und Weltbild. Vienna, Austria: Hölder-Pichler-Temsky, pp. 99121.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Review of Symbolic Logic
  • ISSN: 1755-0203
  • EISSN: 1755-0211
  • URL: /core/journals/review-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 13 *
Loading metrics...

Abstract views

Total abstract views: 194 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th November 2017. This data will be updated every 24 hours.