Skip to main content Accessibility help


  • SAM ROBERTS (a1)


Modal structuralism promises an interpretation of set theory that avoids commitment to abstracta. This article investigates its underlying assumptions. In the first part, I start by highlighting some shortcomings of the standard axiomatisation of modal structuralism, and propose a new axiomatisation I call MSST (for Modal Structural Set Theory). The main theorem is that MSST interprets exactly Zermelo set theory plus the claim that every set is in some inaccessible rank of the cumulative hierarchy. In the second part of the article, I look at the prospects for supplementing MSST with a modal structural reflection principle, as suggested in Hellman (2015). I show that Hellman’s principle is inconsistent (Theorem 5.32), and argue that modal structural reflection principles in general are either incompatible with modal structuralism or extremely weak.


Corresponding author



Hide All
Benacerraf, P. (1973). Mathematical truth. Journal of Philosophy, 70(19), 661679.
Bernays, P. (1976). On the problem of schemata of infinity in axiomatic set theory. In Müller, G. H., editor. Sets and Classes: On the Work by Paul Bernays. Studies in Logic and the Foundations of Mathematics, Vol. 84. Amsterdam: North-Holland, pp. 121172.
Boolos, G. (1998). The iterative conception of set. In Jeffrey, R., editor. Logic, Logic, and Logic. Cambridge, MA: Harvard University Press, pp. 1329.
Boolos, G. (1998). Logic, Logic, and Logic. Cambridge, MA: Harvard University Press. Edited by Jeffrey, Richard.
Clarke-Doane, J. (2017). What is the benacerraf problem? In Pataut, F., editor. New Perspectives on the Philosophy of Paul Benacerraf: Truth, Objects, Infinity. New York: Springer, pp. 93125.
Cotnoir, A. J. & Baxter, D. L. M. (2014). Composition as Identity. Oxford: Oxford University Press.
Devlin, K. J. (1984). Constructibility. Perspectives in Mathematical Logic. Berlin: Springer-Verlag.
Drake, F. (1974). Set Theory: An Introduction to Large Cardinals. Studies in Logic and the Foundations of Mathematics. Amsterdam: North-Holland.
Feferman, S., Friedman, H. M., Maddy, P., & Steel, J. R. (2000). Does mathematics need new axioms? The Bulletin of Symbolic Logic, 6(4), 401446.
Fujimoto, K. (2012). Classes and truths in set theory. Annals of Pure and Applied Logic, 163(11), 14841523.
Gödel, K. (1964). What is cantor’s continuum problem? In Benacerraf, P., and Putnam, H., editors. Philosophy of Mathematics. Upper Saddle River, NJ: Prentice Hall, pp. 470785.
Hale, B. (1996). Structuralism’s unpaid epistemological debts. Philosophia Mathematica, 4(2), 124147.
Hellman, G. (1989). Mathematics without Numbers: Towards a Modal-Structural Interpretation. Oxford: Clarendon.
Hellman, G. (1996). Structuralism without structures. Philosophia Mathematica, 4(2), 100123.
Hellman, G. (2002). Maximality vs. extendability: Reflections on structuralism and set theory. In Malament, D., editor. Reading Natural Philosophy. Chicago: Open Court, pp. 335361.
Hellman, G. (2005). Structuralism. In Shapiro, S., editor. The Oxford Handbook of Philosophy of Mathematics and Logic. Oxford: Oxford University Press, pp. 536562.
Hellman, G. (2011). On the significance of the burali-forti paradox. Analysis, 71(4), 631637.
Hellman, G. (2015). Infinite possibilities and possibilities of infinity. In Auxier, R. E., Anderson, D. R., and Hahn, L. E., editors. The Philosophy of Hilary Putnam. La Salle, IL: Open Court, pp. 259278.
Hewitt, S. (2012). Modalising plurals. Journal of Philosophical Logic, 41(5), 853875.
Hughes, G. & Cresswell, M. (1996). A New Introduction to Modal Logic. London: Routledge.
Kanamori, A. (2003). The Higher Infinite (second edition). Berlin: Springer.
Koellner, P. (2006). On the question of absolute undecidability. Philosophia Mathematica, 14(2), 153188.
Koellner, P. (2009). On reflection principles. Annals of Pure and Applied Logic, 157(2–3), 206219.
Kunen, K. (2011). Set Theory. London: College Publications.
Lévy, A. (1965). A Hierarchy of Formulas in Set Theory. Memoirs of the American Mathematical Society, Vol. 57. Providence, RI: American Mathematical Society.
Lévy, A. & Vaught, R. (1961). Principles of partial reflection in the set theories of Zermelo and ackermann. Pacific Journal of Mathematics, 11, 10451062.
Lewis, D. (1991). Parts of Classes. Oxford: Blackwell.
Linnebo, Ø. (2010). Pluralities and sets. Journal of Philosophy, 107(3), 144164.
Linnebo, Ø. (2013). The potential hierarchy of sets. The Review of Symbolic Logic, 6, 205228.
Linnebo, Ø. (2017). Plural quantification. In Zalta, E. N., editor. The Stanford Encyclopedia of Philosophy (Summer 2017 Edition). Available at
Parsons, C. (1974). Sets and classes. Noûs, 8(1), 112.
Paseau, A. (2007). Boolos on the justification of set theory. Philosophia Mathematica, 15(1), 3053.
Pettigrew, R. (2012). Indispensability arguments and instrumental nominalism. The Review of Symbolic Logic, 5(4), 687709.
Putnam, H. (1967). Mathematics without foundations. Journal of Philosophy, 64(1), 522.
Rayo, A. & Yablo, S. (2001). Nominalism through de-nominalization. Noûs, 35(1), 7492.
Roberts, S. (2017). A strong reflection principle. The Review of Symbolic Logic, 10(4), 651662.
Tait, W. W. (1998). Zermelo’s conception of set theory and reflection principles. In Schirn, M., editor. Philosophy of Mathematics Today. New York: Oxford University Press, pp. 469483.
Uzquiano, G. (1999). Models of second-order Zermelo set theory. Bulletin of Symbolic Logic, 5(3), 289302.
Uzquiano, G. (2003). Plural quantification and classes. Philosophia Mathematica, 11(3), 6781.
Uzquiano, G. (2011). Plural quantification and modality. Proceedings of the Aristotelian Society, 111(2pt2), 219250.
Uzquiano, G. (2014). Mereology and modality. In Kleinschmidt, S., editor. Mereology and Location. Oxford: Oxford University Press, pp. 3356.
Welch, P. (2017). Global reflection principles. In Sober, E., Niiniluoto, I., and Leitgeb, H., editors. Logic, Methodology and Philosophy of Science: Proceedings of the Fifteenth International Congress. London: College Publications, pp. 1836.
Zermelo, E. (1996). On boundary numbers and domains of sets: New investigations in the foundations of set theory. In Ewald, W., editor. From Kant to Hilbert: A Source Book in the Foundations of Mathematics, Vol. 2. New York: Oxford University Press, pp. 12191233.



  • SAM ROBERTS (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.