Skip to main content
×
Home
    • Aa
    • Aa

THE PREHISTORY OF THE SUBSYSTEMS OF SECOND-ORDER ARITHMETIC

  • WALTER DEAN (a1) and SEAN WALSH (a2)
Abstract
Abstract

This paper presents a systematic study of the prehistory of the traditional subsystems of second-order arithmetic that feature prominently in the reverse mathematics program promoted by Friedman and Simpson. We look in particular at: (i) the long arc from Poincaré to Feferman as concerns arithmetic definability and provability, (ii) the interplay between finitism and the formalization of analysis in the lecture notes and publications of Hilbert and Bernays, (iii) the uncertainty as to the constructive status of principles equivalent to Weak König’s Lemma, and (iv) the large-scale intellectual backdrop to arithmetical transfinite recursion in descriptive set theory and its effectivization by Borel, Lusin, Addison, and others.

Copyright
Corresponding author
*DEPARTMENT OF PHILOSOPHY UNIVERSITY OF WARWICK COVENTRY CV4 7AL UK E-mail: W.H.Dean@warwick.ac.uk
DEPARTMENT OF LOGIC AND PHILOSOPHY OF SCIENCE UNIVERSITY OF CALIFORNIA 5100 SOCIAL SCIENCE PLAZA IRVINE, CA 92697-5100 USA E-mail: swalsh108@gmail.com or walsh108@uci.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

W Ackermann . (1925). Begründung des “tertium non datur” mittels der Hilbertschen Theorie der Widerspruchsfreiheit. Mathematische Annalen, 93(1), 136.

W Ackermann . (1937). Die Widerspruchsfreiheit der allgemeinen Mengenlehre. Mathematische Annalen, 114(1), 305315.

J. W Addison . (2004). Tarski’s theory of definability: Common themes in descriptive set theory, recursive function theory, classical pure logic, and finite-universe logic. Annals of Pure and Applied Logic, 126(1–3), 7792.

J. W. Addison & Y. N Moschovakis . (1968). Some consequences of the axiom of definable determinateness. Proceedings of the National Academy of Sciences of the United States of America, 59, 708712.

P Bernays . (1937). A system of axiomatic set theory: Part I. Journal of Symbolic Logic, 2(1), 6577.

P Bernays . (1942). A : Part III. Infinity and enumerability. Analysis. The Journal of Symbolic Logic, 7(2), 6589.

L. E Brouwer . (1927). Über Definitionsbereiche von Funktionen. Mathematische Annalen, 97(1), 6075. Reprinted in Brouwer (1975) and van Heijenoort (1967).

L. E. J Brouwer . (1975). In A. Heyting , editor. Collected Works 1. Philosophy and Foundations of Mathematics. Amsterdam: North Holland.

J. P Burgess . (2010). On the outside looking in: A caution about conservativeness. In Kurt Gödel: Essays for His Centennial. Lecture Notes in Logic. Cambridge: Cambridge University Press, pp. 128144.

P. Caldon & A Ignjatovic . (2005). On mathematical instrumentalism. The Journal of Symbolic Logic, 70(3), 778794.

A Church . (1940). A formulation of the simple theory of types. Journal of Symbolic Logic, 5(2), 5668.

A Church . (1976). Comparison of Russell’s resolution of the semantical antinomies with that of Tarski. Journal of Symbolic Logic, 41(4), 747760.

W. Demopoulos & P Clark . (2005). The logicism of Frege, Dedekind, and Russell. In S. Shapiro , editor. The Oxford Handbook of Philosophy of Mathematics and Logic. Oxford: Oxford University Press, pp. 129165.

F. R Drake . (1989). On the foundations of mathematics in 1987. In H.-D. Ebbinghaus , J. Fernández-Prida , M. Garrido , D. Lascar and M. Rodríquez Artalejo , editors. Logic Colloquium ’87. Studies in Logic and the Foundations of Mathematics, Vol. 129. Amsterdam: North-Holland, pp. 1125.

H.-D Ebbinghaus . (2003). Zermelo: Definiteness and the universe of definable sets. History and Philosophy of Logic, 24(3), 197219.

S Feferman . (1964). Systems of predicative analysis. The Journal of Symbolic Logic, 29, 130.

S Feferman . (1988). Hilbert’s program relativized: Proof-theoretical and foundational reductions. The Journal of Symbolic Logic, 53(2), 364384.

S Feferman . (2005). Predicativity. In S. Shapiro , editor. The Oxford Handbook of Philosophy of Mathematics and Logic. Oxford: Oxford University Press, pp. 590624.

S. Feferman , H. M. Friedman , P. Maddy , & J. R Steel . (2000). Does mathematics need new axioms? The Bulletin of Symbolic Logic, 6(4), 401446.

J Ferreirós . (1999). Labyrinth of Thought: A History of Set Theory and its Role in Modern Mathematics, Vol. 23. Basel: Birkhäuser.

M Franchella . (1997). On the origins of Dénes König’s infinity lemma. Archive for History of Exact Sciences, 51(1), 327.

H Friedman . (1973). Countable models of set theories. In A. Mathias and H. Rogers , editors. Cambridge Summer School in Mathematical Logic. Berlin: Springer, pp. 539573.

H Friedman . (1977). Set theoretic foundations for constructive analysis. Annals of Mathematics, 105(1), 128.

H. Friedman , S. Simpson , & R Smith . (1983). Countable algebra and set existence axioms. Annals of Pure and Applied Logic, 25(2), 141181.

H. Friedman & S. G Simpson . (2000). Issues and problems in reverse mathematics. In P. A. Cholak , S. Lempp , M. Lerman , and R. A. Shore , editors. Computability Theory and its Applications. Contemporary Mathematics, Vol. 257. Providence: American Mathematical Society, pp. 127144.

A. R. D Garciadiego . (1992). Bertrand Russell and the Origins of the Set-Theoretic ‘Paradoxes’. Boston: Birkhäuser.

J Harrison . (1968). Recursive pseudo-well-orderings. Transactions of the American Mathematical Society, 131, 526543.

G Hasenjaeger . (1953). Eine Bemerkung zu Henkin’s Beweis für die vollständigkeit des Prädikatenkalküls der ersten Stufe. The Journal of Symbolic Logic, 18(01), 4248.

A. P Hazen . (1983). Predicative logics. In D. Gabbay and F. Guenthner , editors. Handbook of Philosophical Logic. Volume I: Elements of Classical Logic. Dordrecht: Reidel, pp. 331407.

L Henkin . (1949). The completeness of the first-order functional calculus. The Journal of Symbolic Logic, 14(3), 159166.

L Henkin . (1953). Banishing the rule of substitution for functional variables. The Journal of Symbolic Logic, 18, 201208.

A Heyting . (1956). Intuitionism. An introduction. Amsterdam: North-Holland.

D Hilbert . (1922). Neubegründung der Mathematik. Erste Mitteilung. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 1(1), 157177.

D Hilbert . (1926). Über das Unendliche. Mathematische Annalen, 95, 161190.

D. Hilbert & W Ackermann . (1938). Grundzüge der theoretischen Logik (second edition). Berlin: Springer.

A Hinkis . (2013). Proofs of the Cantor-Bernstein Theorem: A Mathematical Excursion. Science Networks. Historical Studies, Vol. 45. Heidelberg: Birkhäuser/Springer.

C. G. Jockusch Jr. & R. I Soare . (1972). ${\rm{\Pi }}_1^0 $ classes and degrees of theories. Transactions of the American Mathematical Society, 173, 3356.

V. G. Kanovei & V. A Lyubetskii . (2003). On some classical problems of descriptive set theory. Russian Mathematical Surveys, 58(5), 839927.

A. S Kechris . (1995). Classical Descriptive Set Theory. Graduate Texts in Mathematics, Vol. 156. New York: Springer.

L Keldysh . (1974). The ideas of N.N. Luzin in descriptive set theory. Russian Mathematical Surveys, 29(5), 179193.

S. C Kleene . (1955). Hierarchies of number-theoretic predicates. Bulletin of the American Mathematical Society, 61, 193213.

P Koellner . (2009). Truth in mathematics: The question of pluralism. In O. Bueno and O. Linnebo , editors. New Waves in the Philosophy of Mathematics. New York: Palmgrave, pp. 80116.

D König . (1990). Theory of Finite and Infinite Graphs. New York: Springer.

G Kreisel . (1958a). Elementary completeness properties of intuitionistic logic with a note on negations of prenex formulae. The Journal of Symbolic Logic, 23(3), 317330.

G Kreisel . (1958b). Mathematical significance of consistency proofs. The Journal of Symbolic Logic, 23(2), 155182.

G Kreisel . (1962b). On weak completeness of intuitionistic predicate logic. Journal of Symbolic Logic, 27, 139158.

G Kreisel . (1967). Informal rigour and completeness proofs [with discussion]. In I. Lakatos , editor. Problems in the Philosophy of Mathematics. Amsterdam: North-Holland, pp. 138186.

G Kreisel . (1968). A survey of proof theory. The Journal of Symbolic Logic, 33, 321388.

G Kreisel . (1976). What have we learnt from Hilbert’s second problem? In F. E. Browder , editor. Mathematical Developments Arising from Hilbert Problems. Providence: American Mathematical Society, pp. 93130.

G. Kreisel , G. Mints , & S. G Simpson . (1975). The use of abstract language in elementary metamathematics: Some pedagogic examples. In Logic Colloquium. Berlin: Springer, pp. 38131.

P Mancosu . (2003). The Russellian influence on Hilbert and his school. Synthese, 137, 59101.

A Michel . (2008). Remarks on the supposed French ‘semi-’ or ‘pre-intuitionism’. In M. van Atten , P. Boldini , M. Bourdeau , and G. Heinzmann , editors. One Hundred Years of Intuitionism (1907–2007). The Cerisy Conference. Publications des Archives Henri-Poincaré. Basel: Birkhäuser, pp. 149162.

A. Montalbán & R. A Shore . (2012). The limits of determinacy in second-order arithmetic. Proceedings of the London Mathematical Society, 104(2), 223252.

G. H Moore . (1982). Zermelo’s Axiom of Choice. Studies in the History of Mathematics and Physical Sciences, Vol. 8. New York: Springer.

G. H Moore . & A Garciadiego . (1981). Burali-Forti’s paradox: A reappraisal of its origins. Historia Mathematica, 8(3), 319350.

Y. N Moschovakis . (2009). Descriptive Set Theory (second edition). Mathematical Surveys and Monographs, Vol. 155. Providence: American Mathematical Society.

C Parsons . (1970). On a number theoretic choice schema and its relation to induction. Studies in Logic and the Foundations of Mathematics, 60, 459473.

H Poincaré . (1909b). Réflexions sur les deux notes précédentes. Acta Mathematica, 32, 195200.

F. P Ramsey . (1926). Mathematical logic. The Mathematical Gazette, 13(184), 185194.

J. B. Rosser & H Wang . (1950). Non-standard models for formal logics. The Journal of Symbolic Logic, 15(02), 113129.

B Russell . (1908). Mathematical logic as based on the theory of types. American Journal of Mathematics, 30(3), 222262.

G. E Sacks . (1990). Higher Recursion Theory. Perspectives in Mathematical Logic. Berlin: Springer.

K Schütte . (1965a). Eine Grenze für die Beweisbarkeit der transfiniten Induktion in der verzweigten Typenlogik. Archiv für Mathematische Logik und Grundlagenforschung, 7, 4560 (1965).

K Schütte . (1965b). Predicative well-orderings. In J. N. Crossley and M. Dummett , editors. Formal Systems and Recursive Functions. Amsterdam: North-Holland, pp. 280303.

K Schütte . (1977). Proof Theory. Grundlehren der Mathematischen Wissenschaften, Vol. 225. Berlin: Springer.

D Scott . (1962). Algebras of sets binumerable in complete extensions of arithmetic. In J. C. E. Dekker , editor. Proceedings of Symposia in Pure Mathematics, Vol. 5. Providence: American Mathematical Society, pp. 117121.

J. R Shoenfield . (1960). Degrees of models. The Journal of Symbolic Logic, 25(3), 233237.

R. A Shore . (2010). Reverse mathematics: The playground of logic. The Bulletin of Symbolic Logic, 16(3), 378402.

W Sieg . (1985). Fragments of arithmetic. Annals of Pure and Applied Logic, 28(1), 3371.

W Sieg . (2009). Hilbert’s proof theory. In D. M. Gabbay and J. Woods , editors. Handbook of the History of Logic. Volume 5: Logic from Russell to Church. Amsterdam: North-Holland, pp. 321384.

W. Sieg & D Schlimm . (2005). Dedekind’s analysis of number: Systems and axioms. Synthese, 147(1), 121170.

S. G Simpson . (1985). Friedman’s research on subsystems of second order arithmetic. In L. A. Harrington , M. D. Morley , A. Scedrov , and S. G. Simpson , editors. Harvey Friedman’s Research on the Foundations of Mathematics. Studies in Logic and the Foundations of Mathematics, Vol. 117. Amsterdam: North-Holland, pp. 137159.

S. G Simpson . (1988). Partial realizations of Hilbert’s program. The Journal of Symbolic Logic, 53(2), 349363.

S. G Simpson . (1999). Subsystems of Second Order Arithmetic. Perspectives in Mathematical Logic. Berlin: Springer.

S. G Simpson . (2009). Subsystems of Second Order Arithmetic (second edition). Perspectives in Mathematical Logic. Cambridge: Cambridge University Press.

J Steel . (1975). Descending sequences of degrees. The Journal of Symbolic Logic, 40(01), 5961.

W. W Tait . (1968). Constructive reasoning. In B. van Rootselaar and J. F Staal ., editors. Logic, Methodology and Philosophy of Science III. Amsterdam: North-Holland, pp. 185199.

W. W Tait . (1981). Finitism. The Journal of Philosophy, 78(9), 524546.

A. Troelstra & D van Dalen . (1988). Constructivism in Mathematics, An Introduction, Vol. 2. Amsterdam: North-Holland.

A. S Troelstra . (1982). On the origin and developement of Brouwer’s concept of choice sequence. In A. S. Troelstra and D. van Dalen , editors. The L. E. J. Brouwer Centenary Symposium. Studies in Logic and the Foundations of Mathematics, Vol. 110. Amtersdam: North-Holland, pp. 465477.

A Urquhart . (2003). The theory of types. In N. Griffin , editor. The Cambridge Companion to Russell. Cambridge: Cambridge University Press, pp. 286309.

D van Dalen . (1973). Lectures on intuitionism. In A. Mathias and H. Rogers , editors. Cambridge Summer School in Mathematical Logic. Berlin: Springer, pp. 194.

W Veldman . (2014). Brouwer’s fan theorem as an axiom and as a contrast to Kleene’s alternative. Archive for Mathematical Logic, 53(5–6), 621693.

S Walsh . (2014). Logicism, interpretability, and knowledge of arithmetic. The Review of Symbolic Logic, 7(1), 84119.

S Walsh . (2016). Predicativity, the Russell-Myhill paradox, and Church’s intensional logic. The Journal of Philosophical Logic, 45(3), 277326.

H Wang . (1953). Between number theory and set theory. Mathematische Annalen, 126(1), 385409.

H Wang . (1954). The formalization of mathematics. The Journal of Symbolic Logic, 19, 241266.

H Wang . (1955). On denumerable bases of formal systems. In T. Skolem , editor. Mathematical Interpretation of Formal Systems. Studies in Logic and the Foundations of Mathematics. Amsterdam: North-Holland, pp. 5784.

H Weyl . (1921). Über die neue Grundlagenkrise der Mathematik. Mathematische Zeitschrift, 10, 3979.

R Zach . (2003). The practice of finitism: Epsilon calculus and consistency proofs in Hilbert’s program. Synthese, 137(1–2), 211259.

E Zermelo . (1908a). Neuer Beweis für die Möglichkeit einer Wohlordnung. Mathematische Annalen, 65(1), 107128.

E Zermelo . (1908b). Untersuchungen über die Grundlagen der Mengenlehre. I. Mathematische Annalen, 65(2), 261281.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Review of Symbolic Logic
  • ISSN: 1755-0203
  • EISSN: 1755-0211
  • URL: /core/journals/review-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 43 *
Loading metrics...

Abstract views

Total abstract views: 286 *
Loading metrics...

* Views captured on Cambridge Core between 20th February 2017 - 22nd August 2017. This data will be updated every 24 hours.