Antonelli, G. A. (2010a). The nature and purpose of numbers. The Journal of Philosophy, 107(4), 191–212.

Antonelli, G. A. (2010b). Notions of invariance for abstraction principles. Philosophia Mathematica, 18(3), 276–292.

Antonelli, G. A. (2010c). Numerical abstraction via the Frege quantifier. Notre Dame Journal of Formal Logic, 51(2), 161–179.

Boolos, G. (1989). Iteration again. Philosophical Topics, 17, 5–21. .

Boolos, G. (1990). The standard equality of numbers. In Boolos, G., editor. Meaning and Method: Essays in Honor of Hilary Putnam, pp. 261–277. Cambridge: Cambridge University Press. .

Boolos, G. (1998). Logic, Logic, and Logic. Cambridge, MA: Harvard University Press.

Burgess, J. P. (2005). Fixing Frege. . Princeton: Princeton University Press.

Button, T., & Walsh, S. (2015). .

Cook, R. T., editor (2007). The Arché Papers on the Mathematics of Abstraction. . Berlin: Springer.

Cook, R. T. (2012). Conservativeness, stability, and abstraction. British Journal for the Philosophy of Science, 63, 673–696.

Demopoulos, W., editor (1995). Frege’s Philosophy of Mathematics. Cambridge: Harvard University Press.

Ebbinghaus, H.-D. (1985). Extended logics: The general framework. In Barwise, J. and Feferman, S., editors. Model-Theoretic Logics, , pp. 25–76. New York: Springer.

Enderton, H. B. (2001). A Mathematical Introduction to Logic (second edition). Burlington: Harcourt.

Fine, K. (2002). The Limits of Abstraction. Oxford: The Clarendon Press.

Fine, K. (2005). Précis. Philosophical Studies, 122(3), 305–313.

Fine, K. (2006). Our knowledge of mathematical objects. In Gendler, T. Z. and Hawthorne, J., editors. Oxford Studies in Epistemology, Vol. 1, pp. 89–109. Oxford: Clarendon Press.

Frege, G. (1884). Die Grundlagen der Arithmetik. Breslau: Koebner.

Frege, G. (1980). The Foundations of Arithmetic: A Logico-Mathematical Enquiry into the Concept of Number (second edition). Evanston: Northwestern University Press.

Hale, B. (1987). Abstract Objects. Oxford: Basil Blackwell.

Hale, B., & Wright, C. (2000). Implicit definition and the a priori. In Boghossian, P. and Peacocke, C., editors. New Essays on the A Priori, pp. 286–319. Oxford: Clarendon. .

Hale, B., & Wright, C. (2001). The Reason’s Proper Study. Oxford: Oxford University Press.

Heck, R. G. Jr. (1992). On the consistency of second-order contextual definitions. Noûs, 26(4), 491–494.

Hodes, H. (1984). Logicism and the ontological commitments of arithmetic. The Journal of Philosophy, 81(3), 123–149.

Hodes, H. (1990). Where do the natural numbers come from? Synthese, 84(3), 347–407.

Hodes, H. (1991). Where do sets come from? The Journal of Symbolic Logic, 56(1), 150–175.

Hrbacek, K., & Jech, T. (1999). Introduction to Set Theory (third edition). . New York: Dekker.

Jané, I., & Uzquiano, G. (2004). Well and non-well-founded Fregean extensions. Journal of Philosophical Logic, 33, 437–465.

Keenan, E. L., & Moss, L. S. (1985). Generalized quantifiers and the expressive power of natural language. In van Benthem, J. and ter Meulen, A., editors. Generalized Quantifiers in Natural Language, pp. 73–124. Dordrecht: Floris.

Kunen, K. (1980). Set Theory. Volume 102 of Studies in Logic and the Foundations of Mathematics. Amsterdam: North-Holland.

Kunen, K. (2011). Set Theory. London: College Publications.

Lavine, S. (1999). .

Linnebo, Ø. (2011). Higher-order logic. In Horsten, L. and Pettigrew, R., editors. The Continuum Companion to Philosophical Logic, pp. 105–127. London and New York: Continuum.

MacFarlane, J. (2002). Frege, Kant, and the logic in logicism. The Philosophical Review, 111(1), 25–65.

Manzano, M. (1996). Extensions of First Order Logic. Volume 19 of Cambridge Tracts in Theoretical Computer Science. Cambridge: Cambridge University Press.

Marker, D. (2002). Model Theory: An Introduction. Volume 217 of Graduate Texts in Mathematics. New York: Springer.

McGee, V. (1997). How we learn mathematical language. Philosophical Review, 106(1), 35–68.

Parsons, C. (1990). The uniqueness of the natural numbers. Iyyun, 39(1), 13–44.

Parsons, C. (2008). Mathematical Thought and its Objects. Cambridge: Harvard University Press.

Peters, S., & Westerståhl, D. (2008). Quantifiers in Language and Logic. Oxford: Oxford University Press.

Shapiro, S. (1991). Foundations without Foundationalism: A Case for Second-Order Logic. Volume 17 of Oxford Logic Guides. New York: The Clarendon Press.

Shapiro, S. (2000). Philosophy of Mathematics: Structure and Ontology. Oxford: Oxford University Press.

Shapiro, S., editor (2005). The Oxford Handbook of Philosophy of Mathematics and Logic. Oxford: Oxford University Press.

Shapiro, S., & Weir, A. (1999). New V, ZF and abstraction. Philosophia Mathematica, 7(3), 293–321.

Sher, G. (1991). The Bounds of Logic: A Generalized Viewpoint. . Cambridge: MIT Press.

Simpson, S. G. (1999). Subsystems of Second Order Arithmetic. . Berlin: Springer.

Tarski, A. (1986). What are logical notions? History and Philosophy of Logic, 7(2), 143–154.

Väänänen, J., & Wang, T. (2014). Internal categoricity in arithmetic and set theory. Notre Dame Journal of Formal Logic. To appear.

Walsh, S. (2012). Comparing Hume’s Principle, basic law V and Peano arithmetic. Annals of Pure and Applied Logic, 163, 1679–1709.

Walsh, S. (2014a). .

Walsh, S. (2014b). Logicism, interpretability, and knowledge of arithmetic. The Review of Symbolic Logic, 7(1), 84–119.

Wright, C. (1983). Frege’s Conception of Numbers as Objects. . Aberdeen: Aberdeen University Press.

Wright, C. (1997). On the philosophical significance of Frege’s theorem. In Heck, R. G. Jr., editor. Language, Thought, and Logic: Essays in Honour of Michael Dummett, pp. 201–244. Oxford: Oxford University Press. .

Wright, C. (1998). On the harmless impredictavity of *N* ^{=} (Hume’s Principle). In Schirn, M., editor. Philosophy of Mathematics Today, pp. 393–368. Oxford: Clarendon Press. .

Wright, C. (1999). Is Hume’s Principle analytic? Notre Dame Journal of Formal Logic, 40(1), 6–30. .