Skip to main content Accesibility Help
×
×
Home

SEVENTEENTH-CENTURY SCHOLASTIC SYLLOGISTICS. BETWEEN LOGIC AND MATHEMATICS?

  • MIROSLAV HANKE (a1)
Abstract

The seventeenth century can be viewed as an era of (closely related) innovation in the formal and natural sciences and of paradigmatic diversity in philosophy (due to the coexistence of at least the humanist, the late scholastic, and the early modern tradition). Within this environment, the present study focuses on scholastic logic and, in particular, syllogistic. In seventeenth-century scholastic logic two different approaches to logic can be identified, one represented by the Dominicans Báñez, Poinsot, and Comas del Brugar, the other represented by the Jesuits Hurtado, Arriaga, Oviedo, and Compton. These two groups of authors can be contrasted in three prominent features. First, in the role of the theory of validity, which is either a common basis for all particular theories (in this case, sentential logic and syllogistic), or a set of observations regarding a particular theory (in this case, syllogistic). Second, in the view of syllogistic, which is either an implication of a general theory of validity and a semantics of terms, or an algebra of structured objects. Third, in the role of the scholastic analysis of language in terms of suppositio, which either is a semantic underpinning of syllogistic, or it is replaced by a semantics of propositions.

Copyright
Corresponding author
*DEPARTMENT FOR THE STUDY OF ANCIENT AND MEDIEVAL THOUGHT INSTITUTE OF PHILOSOPHY OF THE CZECH ACADEMY OF SCIENCES JILSKÁ1, 110 00 PRAGUE 1 CZECH REPUBLIC E-mail: hanke@flu.cas.cz
References
Hide All
Ashworth, E. J. (1974). Language and Logic in the Post-Medieval Period. Dordrecht: Reidel.
Ashworth, E. J. (2016). The post-medieval period. In Dutilh Novaes, C. and Read, S., editors. The Cambridge Companion to Medieval Logic (first edition). Cambridge: Cambridge University Press, pp. 166191.
Ashworth, E. J. (2017). Buridan and his successors on “ex impossibili sequitur quodlibet”. In Grellard, C., editor. Miroir de l’amitié. Mélanges offerts à Joël Biard (first edition). Paris: Vrin, pp. 243252.
Arriaga, R. de. (1639). Cursus philosophicus. Paris: Jacques Quesnel.
Báñez, D. (1599). Institutiones minoris dialecticae quas summulas vocant . Salamanca: Andreas Renaut.
Bernoulli, J. (1685). Paralellismus ratiocinii logici et algebraici . Basil: Johan Conrad a Mechel.
Bernoulli, J. (1744a). Centum positionum philosophicarum cento. In Bernoulli, J., editor. Opera (tom. 1). Geneva: Cramer, pp. 175191.
Bernoulli, J. (1744b). Methodus ratiocinandi sive usus logicae in praeclaro aliquo phaenomeno physico enodando. In Bernoulli, J., editor. Opera (tom. 1). Geneva: Cramer, pp. 251276.
Blaise of Parma. (1486). Questiones super tractatu De latitudinibus formarum. Padua: Mathaeus Cerdonis.
Broadie, A. (1985). The Circle of John Mair. Logic and Logicians in Pre-Reformation Scotland. Oxford: Oxford University Press.
Buridan, J. (1976). Tractatus de consequentiis. Louvain: Publications univertsitaires.
Capozzi, M. & Roncaglia, G. (2008). Logic and philosophy of logic from humanism to Kant. In Haaparanta, L., editor. The Development of Modern Logic (first edition). Oxford: Oxford University Press, pp. 78158.
Comas del Brugar, M. (1661). Quaestiones minoris dialecticae. Barcelona: Antonius Lacavalleria.
Compton Carleton, T. (1649). Philosophia universa. Antwerpen: Jacob Meursius.
Dutilh Novaes, C. (2008). Logic in the 14th century after Ockham. In Gabay, D. M. and Woods, J., editors. Handbook of the History of Logic (first edition), Vol. 2, Mediaeval and Renaissance Logic. Amsterdam: Elsevier, pp. 433504.
Euler, L. (1770). Lettres à une princesse d’Allemagne sur divers sujets de physique et de Philosophie (tom. 1). Mietau, Leipzig: Steidel.
Gentzen, G. (1935). Untersuchungen über das logische Schließen I. Mathematische Zeitschrift, 39, 176210.
Heider, D. (2014). Universals in Second Scholasticism. A comparative study with focus on the theories of Francisco Suárez, S. J. (1548–1617), João Poinsot, O. P. (1589–1644) and Bartolomeo Mastri da Meldola O. F. M. Conv. (1602–1673)/Bonaventura Belluto O. F. M. Conv. (1600–1676). Amsterdam: John Benjamins Publishing Company.
Hilbert, D. (1923). Die logischen Grundlagen der Mathematik. Mathematische Annalen, 88(1–2), 151165.
Hurtado de Mendoza, P. (1619a). Disputationes in universam philosophiam a Summulis ad Metaphysicam pars prior. Mainz: typis et sumptibus Ioannis Albini.
Hurtado de Mendoza, P. (1619b). Disputationes in universam philosophiam a Summulis ad Metaphysicam pars posterior. Mainz: typis et sumptibus Ioannis Albini.
Hurtado de Mendoza, P. (1624). Universa philosophia. Lyon: Louis Prost.
Knebel, S. K. (2011). Suarezismus, Erkenntnistheoretisches aus dem Nachlass des Jesuitengenerals Tirso de Santalla, González. (1624–1705). Abhandlung und Edition. Amsterdam: B. R. Grüner.
Kvasz, L. (2008). Patterns of Change. Basel: Birkhäuser.
Kvasz, L. (2013). Zrod vedy ako lingvistická udalost: Galileo, Descartes a Newton ako tvorcovia jazyka fyziky [The Scientific Revolution as a Linguistic Event. Galileo, Descartes, and Newton as Creators of the Language of Physics]. Praha: Filosofia.
Leibniz, G. W. (1903). De formae logicae comprobatione per linearum ductus. In Couturat, L., editor. Opuscules et fragments inédits de Leibniz. Extraits des manuscrits de la Bibliothèque royale de Hanovre (first edition). Paris: Presses Universitaires de France, pp. 292321.
Leibniz, G. W. (1999). Generales inquisitiones de analysi notionum et veritatum. In Schepers, H., Schneider, M., Biller, G., Franke, U., and Kliege-Biller, H., editors. Sämtliche Schriften und Briefe. Sechste Reihe, Philosophische Schriften, Vierter Band (first edition). Berlin: Akademie Verlag, pp. 739788.
Oresme, N. (2010). Questiones super Geometriam Euclidis. Stuttgart: Steiner.
d'Ors, A. (1998). Ex impossibili quodlibet sequitur (Domingo Báñez). Medioevo, 24, 177217.
d'Ors, A. (1983). Las Summulae de Domingo de Soto. Anuario Filosófico, 16(1), 209217.
Mugnai, M. (2010). Logic and mathematics in the seventeenth century. History and Philosophy of Logic, 31(4), 297314.
Oviedo, F. de (1640). Cursus philosophicus. Lyon: Pierre Prost.
Paul of Venice, , (1990). Logica Magna, Part II, Fascicule 4. Secunda Pars, Capitula de Conditionali et de Rationali. Oxford: Oxford University Press.
Poinsot, J.. (1638). Cursus philosophici Thomistici pars prima. Cologne: Constantini Münich Bibliopolae.
Read, S. (1993). Formal and material consequence, disjunctive syllogism and gamma. In Jacobi, K., editor. Argumentationstheorie: Scholastische Forschungen zu den logischen und semantischen Regeln korrekten Folgerns (first edition). Leiden: Brill, pp. 233259.
Read, S. (2015). Medieval theories: Properties of terms. In Zalta, E. N., editor. The Stanford Encyclopedia of Philosophy (Spring 2015 Edition). Available at: https://plato.stanford.edu/archives/spr2015/entries/medieval-terms/.
Risse, W. (1964/1970). Die Logik der Neuzeit, 2 vols. Stuttgart: Frommann.
Soto, D. De (1529). Summule. Burgis, : in officina Joannis Junte.
Soto, D. De. (1554). Summule. Salamanca: Andreas à Portonariis.
Weise, C. & Lange, J. C. (1712). Nucleus logicae Weisianae. Giessen: Henning Müller.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Review of Symbolic Logic
  • ISSN: 1755-0203
  • EISSN: 1755-0211
  • URL: /core/journals/review-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed