Skip to main content
×
×
Home

SOLOVAY-TYPE THEOREMS FOR CIRCULAR DEFINITIONS

  • SHAWN STANDEFER (a1)
Abstract

We present an extension of the basic revision theory of circular definitions with a unary operator, □. We present a Fitch-style proof system that is sound and complete with respect to the extended semantics. The logic of the box gives rise to a simple modal logic, and we relate provability in the extended proof system to this modal logic via a completeness theorem, using interpretations over circular definitions, analogous to Solovay’s completeness theorem for GL using arithmetical interpretations. We adapt our proof to a special class of circular definitions as well as to the first-order case.

Copyright
Corresponding author
*DEPARTMENT OF PHILOSOPHY 1001 CATHEDRAL OF LEARNING UNIVERSITY OF PITTSBURGH PITTSBURGH, PA 15260 USA E-mail: standefer@gmail.com
References
Hide All
Antonelli, A. (1994). The complexity of revision. Notre Dame Journal of Formal Logic, 35(1), 6772.
Asmus, C. M. (2013). Vagueness and revision sequences. Synthese, 190(6), 953974.
Belnap, N. (1982). Gupta’s rule of revision theory of truth. Journal of Philosophical Logic, 11(1), 103116.
Blackburn, P., de Rijke, M., & Venema, Y. (2002). Modal Logic. Cambridge, UK: Cambridge University Press.
Boolos, G. (1993). The Logic of Provability. New York City, NY: Cambridge University Press.
Bruni, R. (2013). Analytic calculi for circular concepts by finite revision. Studia Logica, 101(5), 915932.
Chapuis, A. (1996). Alternative revision theories of truth. Journal of Philosophical Logic, 25(4), 399423.
Gupta, A. (1982). Truth and paradox. Journal of Philosophical Logic, 11(1). A revised version, with a brief postscript, is reprinted in Martin (1984), pp. 160.
Gupta, A. (1988–89). Remarks on definitions and the concept of truth. Proceedings of the Aristotelian Society, 89, 227246. Reprinted in Gupta (2011).
Gupta, A. (2006). Finite circular definitions. In Bolander, T., Hendricks, V. F., and Andersen, S. A., editors. Self-Reference. Stanford, CA: CSLI Publications, pp. 7993.
Gupta, A. (2011). Truth, Meaning, Experience. New York City, NY: Oxford University Press.
Gupta, A., & Belnap, N. (1993). The Revision Theory of Truth. Cambridge, MA: MIT Press.
Gupta, A., & Standefer, S. (2014). Conditionals in theories of truth. Manuscript.
Herzberger, H. G. (1982). Notes on naive semantics. Journal of Philosophical Logic, 11(1), 61102.
Horsten, L., Leigh, G., Leitgeb, H., & Welch, P. D. (2012). Revision revisited. Journal of Philosophical Logic, 5(4), 642664.
Hughes, G. E., & Cresswell, M. J. (1996). A New Introduction to Modal Logic. New York City, NY: Routledge.
Kremer, P. (1993). The Gupta-Belnap systems S # and S* are not axiomatisable. Notre Dame Journal of Formal Logic, 34(4), 583596.
Kühnberger, K.-U., Löwe, B., Möllerfeld, M., & Welch, P. (2005). Comparing inductive and circular definitions: Parameters, complexity and games. Studia Logica, 81(1), 7998.
Löwe, B., & Welch, P. D. (2001). Set-theoretic absoluteness and the revision theory of truth. Studia Logica, 68(1), 2141.
Martin, R. L., editor. (1984). Recent Essays on Truth and the Liar Paradox. New York City, NY: Oxford University Press.
Martinez, M. (2001). Some closure properties of finite definitions. Studia Logica, 68(1), 4368.
Orilia, F. (2000). Property theory and the revision theory of definitions. Journal of Symbolic Logic, 65(1), 212246.
Shapiro, L. (2006). The rationale behind revision-rule semantics. Philosophical Studies, 129(3), 477515.
Solovay, R. M. (1976). Provability interpretations of modal logic. Israel Journal of Mathematics, 25(3–4), 287304.
Standefer, S. (2013). Truth, semantic closure, and conditionals. PhD Thesis, University of Pittsburgh.
Welch, P. D. (2001). On Gupta-Belnap revision theories of truth, Kripkean fixed points, and the next stable set. Bulletin of Symbolic Logic, 7(3), 345360.
Yaqūb, A. M. (1993). The Liar Speaks the Truth: A Defense of the Revision Theory of Truth. New York City, NY: Oxford University Press.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Review of Symbolic Logic
  • ISSN: 1755-0203
  • EISSN: 1755-0211
  • URL: /core/journals/review-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed