Skip to main content Accessibility help


  • WALTER DEAN (a1)


This article bears on four topics: observational predicates and phenomenal properties, vagueness, strict finitism as a philosophy of mathematics, and the analysis of feasible computability. It is argued that reactions to strict finitism point towards a semantics for vague predicates in the form of nonstandard models of weak arithmetical theories of the sort originally introduced to characterize the notion of feasibility as understood in computational complexity theory. The approach described eschews the use of nonclassical logic and related devices like degrees of truth or supervaluation. Like epistemic approaches to vagueness, it may thus be smoothly integrated with the use of classical model theory as widely employed in natural language semantics. But unlike epistemicism, the described approach fails to imply either the existence of sharp boundaries or the failure of tolerance for soritical predicates. Applications of measurement theory (in the sense of Krantz, Luce, Suppes, & Tversky (1971)) to vagueness in the nonstandard setting are also explored.


Corresponding author



Hide All
Arora, S. & Barak, B. (2009). Computational Complexity: A Modern Approach. Cambridge: Cambridge University Press.
Barker, C. (2002). The dynamics of vagueness. Linguistics and Philosophy, 25(1), 136.
Barnes, J. (1982). Medicine, experience and logic. In Barnes, J., Brunschwig, J., Burnyeat, M. F., and Schofield, M., editors. Science and Speculation. Cambridge: Cambridge University Press, pp. 2468.
Benacerraf, P. & Putnam, H. (editors) (1983). Philosophy of Mathematics: Selected Readings (second edition). Englewood Cliffs, NJ: Prentice-Hall.
Bernays, P. (1935). Sur le platonisme dans les mathématiques. L’enseignement mathematique, 34, 5269. Reprinted in Benacerraf and Putnam (1983), pp. 5871.
Boolos, G. (1991). Zooming down the slippery slope. Nous, 25(5), 695706.
Borel, E. (1952). Les Nombres Inaccessibles. Paris: Gauthier-Villars.
Buss, S. (1986). Bounded Arithmetic. Naples: Bibliopolis.
Carbone, A. (1996). Cycling in proofs, feasibility and no speed-up for nonstandard arithmetic. Technical Report IHES/M/96/55, Institut des Hautes Études Scientifiques.
Cobreros, P., Egré, P., Ripley, D., & van Rooij, R. (2012). Tolerant, classical, strict. Journal of Philosophical Logic, 41(2), 347385.
Cook, S. (1975). Feasibly constructive proofs and the propositional calculus (preliminary version). Proceedings of Seventh Annual ACM Symposium on Theory of Computing. New York: Association for Computing Machinery, pp. 8397.
Cook, S. & Nguyen, P. (2010). Logical foundations of Proof Complexity. Cambridge: Cambridge University Press.
Dean, W. (2015). Computational complexity theory. In Zalta, E. N., editor. The Stanford Encyclopedia of Philosophy, Fall 2015 Edition. Available at
Dean, W. & Walsh, S. (2017). The prehistory of the subsystems of second-order arithmetic. The Review of Symbolic Logic, 10(2), 357396.
Dietz, R. (2011). The paradox of vagueness. In Horsten, L., and Pettigrew, R., editors. Continuum Companion to Philosophical Logic. New York: Continuum, pp. 128179.
Dragalin, A. G. (1985). Correctness of inconsistent theories with notions of feasibility. In Skowron, A., editor. Computation Theory: Fifth Symposium, Zaborow, Poland, Lecture Notes in Computer Science, Vol. 208. Berlin: Springer, pp. 5879.
Dummett, M. (1959). Wittgenstein’s philosophy of mathematics. The Philosophical Review, 68(3), 324348.
Dummett, M. (1975). Wang’s Paradox. Synthese, 30(3/4), 301324.
Feferman, S., Dawson, J. W. Jr., Goldfarb, W., Parsons, C., & Sieg, W. editors (2003). Kurt Gödel Collected Works. Vol. IV. Publications Correspondence A-G. Oxford Univeristy Press.
Fernando, T. & Kamp, H. (1996). Expecting many. In Galloway, T. and Spence, J., editors. Proceeding from SALT VI. Ithaca, NY: CLC Publications, pp. 5368.
Field, H. (2008). Saving Truth from Paradox. Oxford: Oxford University Press.
Fine, K. (1975). Vagueness, truth and logic. Synthese, 30(3), 265300.
Frege, G. (1879). Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle: Nebert.
Frege, G. (1884). Die Grundlagen der Arithmetik. Breslau: Koebner.
Frege, G. (1893, 1903). Grundgesetze der Arithmetik: begriffsschriftlich abgeleitet. Jena: Pohle.
Gaifman, H. (2004). Non-standard models in a broader perspective. In Enayat, A. and Kossak, R., editors. Non-Standard Models of Arithmetic and Set Theory. Providence, RI: American Mathematical Society, pp. 122.
Gaifman, H. (2010). Vagueness, tolerance and contextual logic. Synthese, 174, 142.
Gandy, R. (1982). Limitations to mathematical knowledge. In van Dalen, D., Lascar, D., and Smiley, J., editors. Logic Colloquium 80, Vol. 108. Amsterdam: Elsevier, pp. 129146.
Ganea, M. (2010). Two (or three) notions of finitism. The Review of Symbolic Logic, 3(01), 119144.
Geiser, J. R. (1974). A formalization of essenin-volpin’s proof theoretical studies by means of nonstandard analysis. The Journal of Symbolic Logic, 39(1), 8187.
Gómez-Torrente, M. (2010). The sorites, linguistic preconceptions, and the dual picture of vagueness. In Dietz, R. and Moruzzi, S., editors. Cuts and Clouds: Vaguenesss, its Nature and its Logic. Oxford: Oxford University Press, pp. 228253.
Graff, D. (2001). Phenomenal continua and the sorites. Mind, 110(440), 905936.
Hájek, P. (1973). Why semisets? Commentationes Mathematicae Universitatis Carolinae, 14(3), 397420.
Hájek, P. & Pudlák, P. (1998). Metamathematics of First-Order Arithmetic. Berlin: Springer.
Hallett, M. & Majer, U. (editors) (2004). David Hilbert’s Lectures on the Foundations of Geometry, 1891–1902. David Hilbert’s Foundational Lectures, Vol. 1. Berlin: Springer.
Heck, R. G. (2014). Predicative frege arithmetic and ‘Everyday’ mathematics. Philosophia Mathematica, 22(3), 279307.
Hyde, D. (2011). The sorites paradox. In Ronzitti, G., editor. Vagueness: A Guide. Berlin: Springer, pp. 117.
Isles, D. (1981). Remarks on the notion of standard non-isomorphic natural number series. In Richman, F., editor. Constructive Mathematics. Berlin: Springer, pp. 111134.
Kamp, H. (1981). The paradox of the heap. In Monnich, U., editor. Aspects of Philosophical Logic. Berlin: Springer, pp. 225277.
Kanovei, V. & Reeken, M. (2004). Nonstandard Analysis, Axiomatically. Berlin: Springer.
Kaye, R. (1991). Models of Peano Arithmetic. Oxford Logic Guides, Vol. 15. Oxford: Oxford University Press.
Keefe, R. (2000). Theories of Vagueness. Cambridge: Cambridge University Press.
Koellner, P. (2009). Truth in mathematics: The question of pluralism. In Linnebo, O. and Bueno, O., editors. New Waves in the Philosophy of Mathematics. London: Palgrave Macmillan UK, pp. 80116.
Kölbel, M. (2010). Vagueness as semantic. In Dietz, R. and Moruzzi, S., editors, Cuts and Clouds: Vaguenesss, its Nature and its Logic. Oxford University Press.
Krantz, D., Luce, R., Suppes, P., & Tversky, A. (1971). Foundations of Measurement: Additive and Polynomial Representations, Vol. I. Academic Press.
Kreisel, G. (1958). Wittgenstein’s remarks on the foundations of mathematics. The British Journal for the Philosophy of Science, 9(34), 135158.
Kreisel, G. (1967a). Informal rigour and completeness proofs. In Lakatos, I., editor. Problems in the Philosophy of Mathematics. Amsterdam: North-Holland, pp. 138186.
Kreisel, G. (1967b). Review of “Le programme ultra-intuitionniste des fondements des mathématiques.” (Volpin). Zentrablatt Math, 134, 910.
Kreisel, G. & Ehrenfeucht, A. (1967). Review of “Le programme ultra-intuitionniste des fondements des mathmatiques” (Volpin). The Journal of Symbolic Logic, 32(4), 517.
Lassiter, D. (2011). Measurement and Modality: The Scalar Basis of Modal Semantics. New York: New York University dissertation.
Luce, D., Krantz, D., Suppes, P., & Tversky, A. (1990). Foundations of Measurement: Representation, Axiomatization, and Invariance, Vol. III. Mineola: Dover.
Luce, R. D. (1956). Semiorders and a theory of utility discrimination. Econometrica, Journal of the Econometric Society, 24(2), 178191.
Magidor, O. (2011). Strict finitism and the happy sorites. Journal of Philosophical Logic, 41(2), 121.
Mannoury, G. (1931). Woord en gedachte: een inleiding tot de signifika, inzonderheid met het oog op het onderwijs in de wiskunde. Groningen: Noordhoff.
Mostowski, A. (1950). Some impredicative definitions in the axiomatic set-theory. Fundamenta mathematicae, 38, 110124.
Narens, L. (1985). Abstract Measurement Theory. Cambridge, MA: MIT Press.
Nelson, E. (1977). Internal set theory: A new approach to nonstandard analysis. Bulletin of the American Mathematical Society, 83(6), 11651198.
Nelson, E. (1986). Predicative Arithmetic. Mathematical Notes, Vol. 32. Princeton, NJ: Princeton University Press.
Novák, V. (1992). The Alternative Mathematical Model of Linguistic Semantics and Pragmatics. Berlin: Springer.
Parikh, R. (1971). Existence and feasibility in arithmetic. Journal of Symbolic Logic, 36(3), 494508.
Parikh, R. (1983). The problem of vague predicates. In Cohen, R., and Wartofsky, M., editors. Language, Logic and Method, Berlin: Springer, pp. 241261.
Poincaré, H. (1906). Les mathématiques et la logique. Revue de métaphysique et de morale, 14(3), 294317.
Putnam, H. (1980). Models and reality. The Journal of Symbolic Logic, 45(3), 464482.
Raffman, D. (1994). Vagueness without paradox. The Philosophical Review, 103(1), 4174.
Robinson, A. (1966). A Non-Standard Analysis. Amsterdam: North-Holland.
Rogers, H. (1987). Theory of Recursive Functions and Effective Computability (Second Edition). Cambridge, MA: MIT Press.
Russell, B. (1908). Mathematical logic as based on the theory of types. American Journal of Mathematics, 30(3), 222262.
Sainsbury, M. (1991). Is there higher-order vagueness? The Philosophical Quarterly, 41(163), 167182.
Sainsbury, R. (1995). Paradoxes. Cambridge: Cambridge University Press.
Sainsbury, R. M. (1990). Concepts without boundaries. In Keefe, R. and Smith, P., editors. Vagueness: A Reader. Cambridge, MA: MIT Press, pp. 251264.
Sassoon, G. W. (2010). Measurement theory in linguistics. Synthese, 174(1), 151180.
Sazonov, V. (1995). On feasible numbers. In Leivant, D., editor. Logic and Computational Complexity. Springer Lecture Notes in Computer Science, Vol. 960. Berlin: Springer, pp. 3051.
Scott, D. & Suppes, P. (1958). Foundational aspects of theories of measurement. Journal of Symbolic Logic, 23(2), 113128.
Shapiro, S. (2011). Vagueness and logic. In Ronzitti, G., editor. Vagueness: A Guide. Berlin: Springer, pp. 5581.
Sheard, M. (1998). Induction the hard way. The American Mathematical Monthly, 105(4), 348353.
Simpson, S. (2009). Subsystems of Second Order Arithmetic (second edition). Cambridge: Cambridge University Press.
Skala, H. J. (1975). Non-Archimedean Utility Theory, Vol. 9. Dordrecht: D. Reidel.
Solovay, R. M. (1976). Interpretability in set theories. Letter to Petr Hájek.
Sorensen, R. (2001). Vagueness and Contradiction. Oxford: Oxford University Press.
Sorensen, R. A. (1988). Blindspots. Oxford: Clarendon.
Steiner, M. (2011). Kripke on logicism, Wittgenstein, and de re beliefs about numbers. In Berger, A., editor. Saul Kripke. Cambridge: Cambridge University Press, pp. 160176.
Suppes, P., Krantz, D., Luce, D., & Tversky, A. (1989). Foundations of Measurement: Geometrical, Threshold, and Probabilistic Representations, Vol. II. San Diego, CA: Academic Press.
Tait, W. W. (1981). Finitism. Journal of Philosophy, 78(9), 524546.
Tye, M. (1994). Sorites paradoxes and the semantics of vagueness. Philosophical Perspectives, 8, 189206.
Tzouvaras, A. (1998). Modeling vagueness by nonstandardness. Fuzzy Sets and Systems, 94(3), 385396.
Unger, P. (1979). There are no ordinary things. Synthese, 41(2), 117154.
van Dantzig, D. (1955). Is 0000${10^{{{10}^{10}}}}$ a finite number? Dialectica, 9(3–4), 273277.
van Rooij, R. (2011). Vagueness and linguistics. In Ronzitti, G., editor. Vagueness: A Guide. Berlin: Springer, 123170.
Vopěnka, P. (1979). Mathematics in the Alternative Set Theory. Leipzig: Teubner.
Wang, H. (1958). Eighty years of foundational studies. Dialectica, 12(3–4), 466497.
Wang, H. (1990). Computation, Logic, and Philosophy. Boston: Kluwer.
Weber, Z. & Colyvan, M. (2010). A topological sorites. The Journal of Philosophy, 107(6), 311325.
Williamson, T. (1994). Vaugeness. London and New York: Routledge.
Wright, C. (2010). The illusion of higher-order vagueness. In Dietz, R. and Moruzzi, S., editors. Cuts and Clouds: Vagueness, its Nature, and its Logic. Oxford: Oxford Univeristy Press, pp. 523549.
Wright, W. & Pitt, F. (1934). Hue-discrimination in normal colour-vision. Proceedings of the Physical Society, 46(3), 459.
Yessenin-Volpin, A. (1961). Le programme ultra-intuitionniste des fondements des mathématiques. Infinitistic Methods, Proceedings of the Symposium on the Foundations of Mathematics. Oxford: Pergamon Press, pp. 201223.
Yessenin-Volpin, A. (1970). The ultra-intuitionistic criticism and the antitraditional program for the foundations of mathematics. In Kino, A., Myhill, J., and Vesley, R., editors. Intuitionism and Proof Theory. Amsterdam: North Holland, pp. 345.
Yessenin-Volpin, A. (1981). About infinity, finiteness and finitization (in connection with the foundations of mathematics). In Richman, F., editor. Constructive Mathematics. Berlin: Springer, pp. 274313.
Yessenin-Volpin, A. (2011). Letter to Brouwer (dated 23-7-1958). In van Dalen, D., editor. The Selected Correspondence of Luitzen Egbertus Jan Brouwer. Berlin: Springer, pp. 457459.
Zambella, D. (1996). Notes on polynomially bounded arithmetic. The Journal of Symbolic Logic, 61(3), 942966.
Zermelo, E. (1929). Über den Begriff der Definitheit in der Axiomatik. Fundamenta Mathematicae, 14, 339344.



  • WALTER DEAN (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.