Skip to main content
×
Home
    • Aa
    • Aa

THREE DIFFERENT FORMALISATIONS OF EINSTEIN’S RELATIVITY PRINCIPLE

  • JUDIT X. MADARÁSZ (a1), GERGELY SZÉKELY (a1) and MIKE STANNETT (a2)
Abstract
Abstract

We present three natural but distinct formalisations of Einstein’s special principle of relativity, and demonstrate the relationships between them. In particular, we prove that they are logically distinct, but that they can be made equivalent by introducing a small number of additional, intuitively acceptable axioms.

Copyright
Corresponding author
*ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS HUNGARIAN ACADEMY OF SCIENCES P.O. BOX 127 BUDAPEST 1364, HUNGARY E-mail: madarasz.judit@renyi.mta.hu URL: http://www.renyi.hu/∼madarasz
ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS HUNGARIAN ACADEMY OF SCIENCES P.O. BOX 127 BUDAPEST 1364, HUNGARY E-mail: szekely.gergely@renyi.mta.hu URL: http://www.renyi.hu/∼turms
DEPARTMENT OF COMPUTER SCIENCE THE UNIVERSITY OF SHEFFIELD 211 PORTOBELLO, SHEFFIELD S1 4DP, UK E-mail: m.stannett@sheffield.ac.uk URL: http://www.dcs.shef.ac.uk/∼mps
References
Hide All
H. Andréka , J. X. Madarász , I. Németi , M. Stannett , & G Székely . (2014). Faster than light motion does not imply time travel. Classical and Quantum Gravity, 31(9), 095005.

H. Andréka , J. X. Madarász , I. Németi , & G Székely . (2008). Axiomatizing relativistic dynamics without conservation postulates. Studia Logica, 89(2), 163186.

Y. F Borisov . (1978). Axiomatic definition of the Galilean and Lorentz groups. Siberian Mathematical Journal, 19(6), 870882.

M. Gömöri & L. E Szabó . (2013a). Formal statement of the special principle of relativity. Synthese, 192(7), 20532076.

M. Gömöri & L. E Szabó . (2013b). Operational understanding of the covariance of classical electrodynamics. Physics Essays, 26, 361370.

J.-M Lévy-Leblond . (1976). One more derivation of the Lorentz transformation. American Journal of Physics, 44(3), 271277.

A. Molnár & G Székely . (2015). Axiomatizing relativistic dynamics using formal thought experiments. Synthese, 192(7), 21832222.

F. A Muller . (1992). On the principle of relativity. Foundations of Physics Letters, 5(6), 591595.

A. Pelissetto & M Testa . (2015). Getting the Lorentz transformations without requiring an invariant speed. American Journal of Physics, 83(4), 338340.

L. E Szabó . (2004). On the meaning of Lorentz covariance. Foundations of Physics Letters, 17(5), 479496.

G Székely . (2013). The existence of superluminal particles is consistent with the kinematics of Einstein’s special theory of relativity. Reports on Mathematical Physics, 72(2), 133152.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Review of Symbolic Logic
  • ISSN: 1755-0203
  • EISSN: 1755-0211
  • URL: /core/journals/review-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 32 *
Loading metrics...

Abstract views

Total abstract views: 143 *
Loading metrics...

* Views captured on Cambridge Core between 28th March 2017 - 18th October 2017. This data will be updated every 24 hours.