Skip to main content
×
×
Home

TRIAL AND ERROR MATHEMATICS I: DIALECTICAL AND QUASIDIALECTICAL SYSTEMS

  • JACOPO AMIDEI (a1), DUCCIO PIANIGIANI (a2), LUCA SAN MAURO (a1), GIULIA SIMI (a2) and ANDREA SORBI (a1)...
Abstract

We define and study quasidialectical systems, which are an extension of Magari’s dialectical systems, designed to make Magari’s formalization of trial and error mathematics more adherent to the real mathematical practice of revision: our proposed extension follows, and in several regards makes more precise, varieties of empiricist positions à la Lakatos. We prove several properties of quasidialectical systems and of the sets that they represent, called quasidialectical sets. In particular, we prove that the quasidialectical sets are ${\rm{\Delta }}_2^0$ sets in the arithmetical hierarchy. We distinguish between “loopless” quasidialectal systems, and quasidialectical systems “with loops”. The latter ones represent exactly those coinfinite c.e. sets, that are not simple. In a subsequent paper we will show that whereas the dialectical sets are ω-c.e., the quasidialectical sets spread out throughout all classes of the Ershov hierarchy of the ${\rm{\Delta }}_2^0$ sets.

Copyright
Corresponding author
*SCUOLA NORMALE SUPERIORE I-56126 PISA, ITALY E-mail: jacopo.amidei@sns.it
DIPARTIMENTO DI INGEGNERIA INFORMATICA E SCIENZE MATEMATICHE UNIVERSITÀ DEGLI STUDI DI SIENA I-53100 SIENA, ITALY E-mail: duccio.pianigiani@unisi.it
SCUOLA NORMALE SUPERIORE I-56126 PISA, ITALY E-mail: luca.sanmauro@sns.it
§DIPARTIMENTO DI INGEGNERIA INFORMATICA E SCIENZE MATEMATICHE UNIVERSITÀ DEGLI STUDI DI SIENA I-53100 SIENA, ITALY E-mail: giulia.simi@unisi.it
DIPARTIMENTO DI INGEGNERIA INFORMATICA E SCIENZE MATEMATICHE UNIVERSITÀ DEGLI STUDI DI SIENA I-53100 SIENA, ITALY E-mail: andrea.sorbi@unisi.it
References
Hide All
Amidei, J., Pianigiani, D., San Mauro, L., & Sorbi, A. Trial and error mathematics II: Dialectical sets and quasidialectical sets, their degrees, and their distribution within the class of limit sets. Preprint, 2014, submitted.
Angluin, D., & Smith, C. H. (1983). Inductive inference: Theory and methods. ACM Computing Surveys (CSUR), 15(3), 237269.
Bernardi, C. (1974). Aspetti ricorsivi degli insiemi dialettici. Bollettino della Unione Matematica Italiana. Series IV, 9, 5161.
Cellucci, C. (2000). The growth of mathematical knowledge: An open world view. In Grosholz, E. and Breger, H., editors. The Growth of Mathematical Knowledge. Dordrecht: Kluwer, pp. 153176.
Cooper, S. B. (2003). Computability Theory. Boca Raton, London, New York, Washington, DC: Chapman & Hall/CRC Mathematics.
Copeland, B. J., & Shagrir, O. (2013). Turing versus Gödel on computability and the mind. In Copeland, B. J., Posy, C. J., and Shagrir, O., editors. Computability: Turing, Gödel, Church, and Beyond. Cambridge, MA: MIT Press, pp. 133.
Gnani, G. (1974). Insiemi dialettici generalizzati. Matematiche, XXIX(2), 111.
Gold, E. M. (1965). Limiting recursion. Journal of Symbolic Logic, 30, 2848.
Hájek, P. (1977). Experimental logics and theories. Journal of Symbolic Logic, 42(4), 515522.
Hintikka, J., & Mutanen, A. (1988). An alternative concept of computability. In Hintikka, J., editor. Language, Truth, and Logic in Mathematics. Dordrecht: Kluwer, pp. 174188.
Jeroslow, R. G. (1975). Experimental logics and theories. Journal of Philosophical Logic, 4(3), 53267.
Kelly, K. (1996). The Logic of Reliable Inquiry. Oxford: Oxford University Press.
Kitcher, P. (1983). The nature of mathematical knowledge. New York: Oxford University Press.
Kreisel, G. (1967). Informal rigour and completeness proofs. In Lakatos, I., editor. Problems in the Philosophy of Mathematics. Amsterdam: North-Holland, pp. 138171.
Kugel, P. (1986). Thinking may be more than computing. Cognition, 32, 137198.
Lakatos, I. (1976a). Proofs and Refutations. Cambridge: Cambridge University Press.
Lakatos, I. (1976b). A renaissance of empiricism in the recent philosophy of mathematics. British Journal for the Philosophy of Science, 27(3), 201223.
Lolli, G. (2008). Experimental methods in proofs. In Lupacchini, R., and Corsi, G., editors. Deduction, Computation, Experiment. Milan: Springer, pp. 6579.
Magari, R. (1974). Su certe teorie non enumerabili. Annali di Matematica Pura ed Applicata. Series IV, XCVIII, 119152.
Magari, R. (1980). Natura empirica della metamatematica. Technical report, Dipartimento di Matematica, Università di Siena.
Mancosu, P. (2008). The Philosophy of Mathematical Practice. Oxford: Oxford University Press.
Montagna, F., Simi, G., & Sorbi, A. (1996). Logic and probabilistic systems. Archive for Mathematical Logic, 35(4), 225261.
Osherson, D. N., Stob, M., & Weinstein, S. (1991). A Universal Inductive Inference Machine. Journal of Symbolic Logic, 56(2), 661672.
Putnam, H. (1965). Trial and error predicates and the solution of a problem of Mostowski. Journal of Symbolic Logic, 30, 4957.
Rogers, H. Jr. (1967). Theory of Recursive Functions and Effective Computability. New York: McGraw-Hill.
Shapiro, S., & Mc Carthy, T. (1987). Turing projectability. Notre Dame Journal of Formal Logic, 28(4), 520537.
Soare, R. I. (1987). Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic, Omega Series. Heidelberg: Springer-Verlag.
Turing, A. M. (1947). Turing Digital Archive. Lecture to London Mathematical Society, February 20, 1947.
Turing, A. M. (1996). Intelligent machinery, a heretical theory, c. 1951. Philosophia Mathematica. Series III, 4(3), 256260.
van Leeuwen, J., & Wiedermann, J. (2012). Computation as an unbounded process. Theoretical Computer Science, 429, 202212.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Review of Symbolic Logic
  • ISSN: 1755-0203
  • EISSN: 1755-0211
  • URL: /core/journals/review-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed