Skip to main content


  • MIHAI GANEA (a1)

Finitism is given an interpretation based on two ideas about strings (sequences of symbols): a replacement principle extracted from Hilbert’s work and a counting principle inspired by Tait. These principles are used to justify an equational arithmetic based on the algebra of lower elementary functions. The extension of this algebra to Grzegorczyk’s class ɛ2 can be justified by means of an additional finitistic choice principle, thus obtaining a second equational theory . It is unknown whether is strictly stronger than since ɛ2 may coincide with the class of lower elementary functions.

If the objects of arithmetic are taken to be binary numerals instead of tally numerals, then it becomes possible to provide a finitistic justification for a theory that may be incomparable to (neither of the two includes the other). I conclude by suggesting that the equational theory of Kalmar elementary functions is a strict upper bound for finitistic arithmetic.

Corresponding author
Hide All
Beeson, M. (1986). Proving programs and programming proofs. In Barcan Marcus, R., Dorn, G.J.W., and Weingartner, P., (eds.), Logic, Methodology and Philosophy of ScienceVII, proceedings of the International Congress, Salzburg, 1983, Amsterdam: North-Holland, pp. 5181.
Berarducci, A., & Intrigila, B. (1991). Combinatorial principles in elementary number theory. Annals of Pure and Applied Logic, 55, 3550.
Bernays, P. (1923). Erwiderung auf die Note von Herrn Aloys Müller: Über Zahlen als Zeichen. Mathematische Annalen, 90, 159–63. English translation in Mancosu (1998), pp. 223–226.
Bernays, P. (1930). Die Philosophie der Mathematik und die Hilbertsche Beweistheorie’. Blätter fur deutsche Philosophie, 4, 326367. English translation in Mancosu (1998), pp. 234–265.
Buss, S. (1998). First order proof theory of arithmetic. In Buss, S., editor. Handbook of Proof Theory. Amsterdam: Elsevier Science BV, pp. 79147.
Clote, P. (1999). Computation models and function algebras. In Griffor, E. R., editor. Handbook of Computability Theory. Amsterdam: Elsevier, pp. 589681.
Cook, S. (1975). Feasible constructive proofs and the propositional calculus. In, Chandra, A. K., Meyer, A. R., Rounds, W. C., Stearns, R. E., Tarjan, R. E., Winograd, S., Young, P. R., (eds.) Proceedings of the 7th ACM Symposium on the Theory of Computation. New York: ACM (Association for computing machinery) pp. 8397.
Cook, S., & Urquhart, A. (1993). Functional interpretations of feasibly constructive arithmetic. Annals of Pure and Applied Logic, 63, 103200.
Cornaros, C. (1995). On Grzegorczyk induction. Annals of Pure and Applied Logic, 74, l21.
Curry, H. (1941). A formalization of recursive arithmetic. American Journal of Mathematics, 63, 263282.
Detlefsen, M. (1986). Hilbert’s Program: An Essay on Mathematical Instrumentalism. Synthese Library 182. Boston, MA: Reidel/Kluwer Academic.
Gandy, R. (1982). Limitations to mathematical knowledge. In van Dalen, D., Lascar, D., and Smiley, J., editors. Logic Colloquium ’80. Amsterdam: Elsevier, pp. 129146.
Ganea, M. (2005). Arithmetic Without Numbers. Doctoral dissertation, Department of Philosophy, University of Illinois at Chicago.
George, A., & Velleman, D. J. (1998). Two conceptions of natural number. In Dales, H. G. and Oliveri, G., editors. Truth in Mathematics. New York: Oxford University Press, pp. 311327.
Girard, J. -Y. (1987). Proof Theory and Logical Complexity. Naples: Bibliopolis.
Gödel, K. (1931). Über formal unentscheibare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, 38, 173198. English translation in Gödel (1986), pp. 144–195.
Gödel, K. (1986). Collected Works I. Feferman, S., Dawson, J. W. Jr., Kleene, S. C., Moore, G. H., Solovay, R. M., van Heijenoort, J.Oxford: Oxford University Press.
Goodstein, R. (1954). Logic-free characterizations of recursive arithmetic. Mathematica Scandinavica, 2, 247261.
Goodstein, R. (1957). Recursive Number Theory—A Development of Recursive Arithmetic in a Logic-Free Equation Calculus. Studies in Logic and the Foundations of Mathematics. Amsterdam: North-Holland.
Hallett, M. (1995). Hilbert and logic. In Marion, M., and Cohen, R. S., editors. Quebec Studies in the Philosophy of Science I. Dordrecht: Kluwer Academic Publishers. pp. 135187.
Hilbert, D. (1910). Elemente und Prinzipienfragen der Mathematik. Sommersemester 1910: Ausgearbeit von Richard Courant. Göttingen, Germany: Mathematisches Institut, Georg-August Universität. 163 pages, handwritten.
Hilbert, D. (1922). Neubegründung der Mathematik. Erste Mitteilung. Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Universität, 1, 157177. English translation in Mancosu (1998), pp. 198–214.
Hilbert, D. (1925). Uber das Unendliche. Mathematische Annalen, 95, 161190. Lecture given in Münster, 4 June 1925. English translation in van Heijenoort (1967), pp. 367–392.
Hilbert, D. (1927). Die Grundlagen der Mathematik. Abhandlungen aus dem mathematischen Seminar der Hamburghischen Universität, 6 (1928), 6585. English translation in van Heijenoort (1967), pp. 464–479.
Hilbert, D., & Bernays, P. (1934). Grundlagen der Mathematik I. Berlin: Springer.
Hilbert, D., & Bernays, P. (1939). Grundlagen der Mathematik II. Berlin: Springer.
Ignjatovic, A. (1994). Hilbert’s program and the omega-rule. Journal of Symbolic Logic, 59(1), 322343.
Krajíček, J. (1995). Bounded Arithmetic, Propositional Logic, and Complexity Theory. Encyclopedia of Mathematics and Its Applications 60. New York: Cambridge University Press.
Mancosu, P., editor. (1998). From Brouwer to Hilbert—The Debate on the Foundations of Mathematics in the 1920’s. New York: Oxford University Press.
Marion, M. (1995). Kronecker’s safe haven of real mathematics. In Marion, M., and Cohen, R. S., editors. pp. 189–215.
Nelson, E. (1986). Predicative Arithmetic. Mathematical Notes 32, Princeton: Princeton University Press.
Parsons, C. (1980). Mathematical intuition. Proceedings of the Aristotelian Society, 80, 142168.
Parsons, C. (1986). Intuition in constructive mathematics. In Butterfield, J., editor. Language, Mind and Logic. New York: Cambridge University Press, pp. 211229.
Parsons, C. (1994). Intuition and number. In George, A., editor. Mathematics and Mind. New York: Oxford University Press, pp. 141157.
Parsons, C. (1998). Finitism and intuitive knowledge. In Schirn, M., editor. Philosophy of Mathematics Today. New York: Clarendon Press, pp. 249270.
Parsons, C. (2008). Mathematical Thought and Its Objects. New York: Cambridge University Press.
Rose, H. (1962). Ternary recursive arithmetic. Mathematica Scandinavica, 10, 201216.
Rose, H. (1984). Subrecursion—Functions and Hierarchies. Oxford, UK: Clarendon Press.
Sieg, W. (1999). Hilbert’s programs: 1917–1922. Bulletin of Symbolic Logic, 5(1), 144.
Simpson, S. (1988). Partial realizations of Hilbert’s program. Journal of Symbolic Logic, 53(2), 349363.
Skolem, T. (1923). Begründung der elementaren Arithmetik durch die rekurriende Denkweise ohne Anwendung scheinbarer Verädnderlichen mit unendlichen Ausdenungsbereich. Videnskapsselskkapets skrifter, I. Matematisk-naturvidenskabelig klasse 6. English translation in van Heijenoort (1967), pp. 302–333.
Skolem, T. (1950). Some remarks on the foundation of set theory. In Proceedings of the International Congress of Mathematicians, Cambridge, Massachusetts, U.S.A., August 30 to September 6, 1950, American Mathematical Society, Providence 1952, vol. I, pp. 695–704; reprinted in Skolem, 1970, pp. 519–528.
Skolem, T. (1962). Proof of some theorems on recursively enumerable sets. Notre Dame Journal of Formal Logic, 3, 6574.
Skolem, T. (1970). Selected Works in Logic. Fenstad, J. E., editor. OsloUniversitetforlaget.
Smorýnski, C. (1977). The incompleteness theorems. In Barwise, J., editor. The Handbook of Mathematical Logic. New York: Elsevier. pp. 821865.
Tait, W. (1981). Finitism. Journal of Philosophy, 78, 524546.
Troelstra, A. S., & van Dalen, D. (1988). Constructivism in Mathematics I. Studies in Logic and the Foundations of Mathematics 121. New York: Elsevier.
van Heijenoort, J., editor. (1967). From Frege to Gödel. Cambridge, MA: Harvard University Press.
Weyl, H. (1921). Über die neuen Grundlagenkrise der Mathematik. Mathematische Zeitschrift, 10, 3979. English translation in Mancosu (1998), pp. 86–118.
Zach, R. (1998). Numbers and functions in Hilbert’s finitism. Taiwanese Journal for Philosophy and History of Science, 10, 3360.
Zach, R. (2003). The practice of finitism: Epsilon calculus and consistency proofs in Hilbert’s program. Synthese, 137, 211259.
Zach, R. (2004). Hilbert’s “Verunglückter Beweis,” the first epsilon theorem and consistency proofs. History and Philosophy of Logic, 25, 7994.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Review of Symbolic Logic
  • ISSN: 1755-0203
  • EISSN: 1755-0211
  • URL: /core/journals/review-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 19 *
Loading metrics...

Abstract views

Total abstract views: 270 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd July 2018. This data will be updated every 24 hours.