Skip to main content
×
×
Home

TYCHONOFF HED-SPACES AND ZEMANIAN EXTENSIONS OF S4.3

  • GURAM BEZHANISHVILI (a1), NICK BEZHANISHVILI (a2), JOEL LUCERO-BRYAN (a3) and JAN VAN MILL (a4)
Abstract

We introduce the concept of a Zemanian logic above S4.3 and prove that an extension of S4.3 is the logic of a Tychonoff HED-space iff it is Zemanian.

Copyright
Corresponding author
*DEPARTMENT OF MATHEMATICAL SCIENCES NEW MEXICO STATE UNIVERSITY LAS CRUCES, NM 88003, USA E-mail: guram@math.nmsu.edu
INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION UNIVERSITY OF AMSTERDAM 1090 GE AMSTERDAM, THE NETHERLANDS E-mail: N.Bezhanishvili@uva.nl
DEPARTMENT OF APPLIED MATHEMATICS AND SCIENCES KHALIFA UNIVERSITY OF SCIENCE AND TECHNOLOGY ABU DHABI, UAE E-mail: joel.lucero-bryan@kustar.ac.ae
§ KORTEWEG-DE VRIES INSTITUTE FOR MATHEMATICS UNIVERSITY OF AMSTERDAM 1098 XG AMSTERDAM, THE NETHERLANDS E-mail: j.vanMill@uva.nl
References
Hide All
Benthem, J. van & Bezhanishvili, G. (2007). Modal logics of space. In Aiello, M., Pratt-Hartmann, I., & Benthem, J. van, editors. Handbook of Spatial Logics. Dordrecht: Springer, pp. 217298.
Bezhanishvili, G., Bezhanishvili, N., Lucero-Bryan, J., & Mill, J. van (2015).S4.3 and hereditarily extremally disconnected spaces. Georgian Mathematical Journal, 22(4), 469475.
Bezhanishvili, G., Bezhanishvili, N., Lucero-Bryan, J., & Mill, J. van (to appear). Krull dimension in modal logic. The Journal of Symbolic Logic.
Bezhanishvili, G., Esakia, L., & Gabelaia, D. (2005). Some results on modal axiomatization and definability for topological spaces. Studia Logica, 81(3), 325355.
Bezhanishvili, G., Gabelaia, D., & Lucero-Bryan, J. (2015). Modal logics of metric spaces. Review of Symbolic Logic, 8(1), 178191.
Bezhanishvili, G. & Harding, J. (2012). Modal logics of Stone spaces. Order, 29(2), 271292.
Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal Logic. Cambridge: Cambridge University Press.
Błaszczyk, A., Rajagopalan, M., & Szymanski, A. (1993). Spaces which are hereditarily extremally disconnected. Journal of the Ramanujan Mathematical Society, 8(1–2), 8194.
Bull, R. A. (1966). That all normal extensions of S4.3 have the finite model property. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 12, 341344.
Chagrov, A. & Zakharyaschev, M. (1997). Modal Logic. New York: Oxford University Press.
Dow, A. & Mill, J , . van (2007). On n-to-one continuous images of β. Studia Scientiarum Mathematicarum Hungarica, 44(3), 355366.
Eckertson, F. W. (1997). Resolvable, not maximally resolvable spaces. Topology and its Applications, 79(1), 111.
Efimov, B. A. (1970). Extremally disconnected bicompacta and absolutes (on the occasion of the one hundredth anniversary of the birth of Felix Hausdorff). Trudy Moskovskogo Mathematicheskogo Obshchestva, 23, 235276.
Engelking, R. (1989). General Topology (second edition). Berlin: Heldermann Verlag.
Fine, K. (1971). The logics containing S4.3. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 17, 371376.
Fine, K. (1974). An ascending chain of S4 logics. Theoria, 40(2), 110116.
Gleason, A. M. (1958). Projective topological spaces. Illinois Journal of Mathematics, 2, 482489.
Kracht, M. (1999). Tools and Techniques in Modal Logic. Studies in Logic and the Foundations of Mathematics, Vol. 142. Amsterdam: North-Holland Publishing Co.
Kremer, P. (2013). Strong completeness of S4 for any dense-in-itself metric space. Review of Symbolic Logic, 6(3), 545570.
McKinsey, J. C. C. & Tarski, A. (1944). The algebra of topology. Annals of Mathematics, 45, 141191.
Mill, J. van (1984). An introduction to βω . In Kunen, K., & Vaughan, J., editors. Handbook of Set-Theoretic Topology. Amsterdam: North-Holland, pp. 503567.
Rasiowa, H. & Sikorski, R. (1963). The Mathematics of Metamathematics. Monografie Matematyczne, Tom 41. Warsaw: Państwowe Wydawnictwo Naukowe.
Segerberg, K. (1971). An Essay in Classical Modal Logic, Vols. 1, 2, 3. Filosofiska Studier, No. 13. Uppsala: Filosofiska Föreningen och Filosofiska Institutionen vid Uppsala Universitet.
Walker, R. C. (1974). The Stone-Čech Compactification. New York-Berlin: Springer-Verlag.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Review of Symbolic Logic
  • ISSN: 1755-0203
  • EISSN: 1755-0211
  • URL: /core/journals/review-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 18 *
Loading metrics...

Abstract views

Total abstract views: 72 *
Loading metrics...

* Views captured on Cambridge Core between 14th January 2018 - 25th April 2018. This data will be updated every 24 hours.