Skip to main content Accessibility help




In this paper we summarize some results about sets in Frege structures. The resulting set theory is discussed with respect to its historical and philosophical significance. This includes the treatment of diagonalization in the presence of a universal set.


Corresponding author



Hide All
Aczel, P. (1977). The strength of Martin Löf’s intuitionistic type theory with one universe. In Miettinen, S., and Väänänen, J., editors. Proceedings of the Symposiums on Mathematical Logic in Oulo 1974 and in Helsinki 1975. Report No. 2 from the Dept. of Philosophy, Helsinki: University of Helsinki.
Aczel, P. (1980). Frege structures and the notion of proposition, truth and set. In Barwise, J., Keisler, H., and Kunen, K., editors. The Kleene Symposium, Amsterdam: North-Holland, pp. 3159.
Beeson, M. (1985). Foundations of Constructive Mathematics. Ergebnisse der Mathematik und ihrer Grenzgebiete; 3.Folge, Bd. 6. Berlin: Springer.
Cantini, A. (1993). Extending the first-order theory of combinators with self-referential truth. Journal of Symbolic Logic, 58(2), 477513.
Cantini, A. (1996). Logical Frameworks for Truth and Abstraction, Vol. 135 of Studies in Logic and the Foundations of Mathematics. Amsterdam: North-Holland.
Church, A. (1974). Set theory with a universal set. In Henkin, L., editor. Proceedings of the Tarski Symposium, Vol. XXV of Proceedings of Symposia in Pure Mathematics. Providence, R.1.: American Mathematical Society, pp. 297308.
Feferman, S. (1975). A language and axioms for explicit mathematics. In Crossley, J., editor. Algebra and Logic, Vol. 450 of Lecture Notes in Mathematics, Berlin: Springer, pp. 87139.
Feferman, S. (1979). Constructive theories of functions and classes. In Boffa, M., van Dalen, D., and McAloon, K., editors. Logic Colloquium 78, Amsterdam: North–Holland, pp. 159224.
Feferman, S., & Jäger, G. (1993). Systems of explicit mathematics with non-constructive μ-operator. Part I. Annals of Pure and Applied Logic, 65(3), 243263.
Feferman, S., & Jäger, G. (1996). Systems of explicit mathematics with non-constructive μ-operator. Part II. Annals of Pure and Applied Logic, 79, 3752.
Flagg, R., & Myhill, J. (1987a). An extension of Frege structures. In Kueker, D., Lopez-Escobar, E., and Smith, C., editors. Mathematical Logic and theoretical computer science, New York: Dekker, pp. 197217.
Flagg, R., & Myhill, J. (1987b). Implication and analysis in classical Frege structures. Annals of Pure and Applied Logic, 34, 3385.
Forster, T. E. (1995). Set Theory with a Universal Set: Exploring an Untyped Universe. Number 31 in Oxford Logic Guides. Oxford, UK: Oxford University Press.
Glass, T. (1996). On power set in explicit mathematics. Journal of Symbolic Logic, 61(2), 468489.
Hayashi, S. & Kobayashi, S. (1995). A new formulation of Feferman’s system of functions and classes and its relation to Frege structures. International Journal of Foundations of Computer Science, 6(3), 187202.
Hilbert, D. (1905). Logische Principien des mathematischen Denkens. Vorlesung Sommersemester 1905, Ausarbeitung von Ernst Hellinger (Bibliothek des Mathematischen Instituts der Universität Göttingen).
Jäger, G. (1997). Power types in explicit mathematics? Journal of Symbolic Logic, 62(4), 11421146.
Jäger, G. & Strahm, T. (1995). Second order theories with ordinals and elementary comprehension. Archive for Mathematical Logic, 34(6), 345375.
Kahle, R. (1999). Frege structures for partial applicative theories. Journal of Logic and Computation, 9(5), 683700.
Kahle, R. (2001). Truth in applicative theories. Studia Logica, 68(1), 103128.
Kahle, R. (2003). Universes over Frege structures. Annals of Pure and Applied Logic, 119(1–3), 191223.
Kahle, R. (2007). The Applicative Realm, Vol. 40 of Textos de Matemática. Departamento de Matemática, Universidade de Coimbra. Habilitationsschrift at the Fakultät für Informations- und Kommunikationswissenschaften, Coimbra: Universität Tübingen.
Kahle, R. (2009). The universal set—a (never fought) battle between philosophy and mathematics. In Pombo, O., & Nepomuceno, Á., editors. Lógica e Filosofia da Ciência, Vol. 2 of Colecção Documenta. Lisbon: Centro de Filosofia das Ciências da Universidade de Lisboa, pp. 5365.
Kahle, R., & Studer, T. (2001). Formalizing non-termination of recursive programs. Journal of Logic and Algebraic Programming, 49(1–2), 114.
Libert, T. (2008). Positive Frege and its Scott-style semantics. Mathematical Logic Quarterly, 54(4), 410434.
Moore, G. H. (2002). Hilbert on the infinite: The role of set theory in the evolution of Hilbert’s thought. Historia Mathematica, 29, 4064.
Moschovakis, Y. (1994). Notes on Set Theory. Undergraduate Texts in Mathematics. Berlin: Springer.
Oberschelp, A. (1973). Set Theory over Classes, Vol. 106 of Dissertationes Mathematicae. Warszawa: Instytut Matematyczny PAN
Scott, D. (1975). Combinators and classes. In Böhm, C., editor. λ-Calculus and Computer Science Theory, Vol. 37 of Lecture Notes in Computer Science. Berlin: Springer, pp. 126.
Strahm, T. (1996). On the proof theory of applicative theories. PhD Thesis, Institut für Informatik und angewandte Mathematik, Universität Bern.
Troelstra, A., & van Dalen, D. (1988). Constructivism in Mathematics, Vol. 2. Amsterdam: North-Holland.




Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.