Avron, A. (1984). On modal systems having arithmetical interpretations. Journal of Symbolic Logic, 49(3), 935–942.
Avron, A. (1996). The method of hypersequents in the proof theory of propositional non-classical logics. In Logic: From Foundations to Applications (Staffordshire, 1993). . New York, NY: Oxford University Press, pp. 1–32.
Belnap, N. D Jr. (1982). Display logic. Journal of Philosophical Logic, 11(4), 375–417.
Bimbó, K. (2007).
,
, LK, and cutfree proofs. Journal of Philosophical Logic, 36(5), 557–570. Borga, M. (1983). On some proof theoretical properties of the modal logic GL. Studia Logica: An International Journal for Symbolic Logic, 42(4), 453–459.
Borga, M., & Gentilini, P. (1986). On the proof theory of the modal logic Grz. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 32(2), 145–148.
Borisavljević, M., Došen, K., & Petrić, Z. (2000). On permuting cut with contraction. Mathematical Structures in Computer Science, 10(2), 99–136. .
Dawson, J. E., & Goré, R. (2010). Generic methods for formalising sequent calculi applied to provability logic. In Fermüller, C. G., and Voronkov, A., editors. LPAR (Yogyakarta), Vol. 6397 of Lecture Notes in Computer Science. Berlin Heidelberg, Germany: Springer, pp. 263–277.
Demri, S., & Goré, R. (2002). Theoremhood-preserving maps characterizing cut elimination for modal provability logics. Journal of Logic and Computation, 12(5), 861–884.
Došen, K. (1985). Sequent-systems for modal logic. Journal of Symbolic Logic, 50(1), 149–168.
Gentzen, G. (1969). The collected papers of Gerhard Gentzen. In Szabo, M. E., editor. Studies in Logic and the Foundations of Mathematics. Amsterdam: North-Holland Publishing Co.
Goré, R. (1999). Tableau methods for modal and temporal logics. In Handbook of Tableau Methods. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 297–396.
Goré, R., Heinle, W., & Heuerding, A. (1997). Relations between propositional normal modal logics: An overview. Journal of Logic and Computation, 7(5), 649–658.
Goré, R., & Ramanayake, R. (2008). Valentini’s cut-elimination for provability logic resolved. In Areces, C., and Goldblatt, R., editors. Advances in Modal Logic, Vol. 7. London: College Publications, pp. 91–111.
Goré, R., & Ramanayake, R. (2012). .
Guglielmi, A. (2007). A system of interaction and structure. ACM Transactions on Computational Logic, 8(1), Art. 1, 64.
Indrzejczak, A. (1996). Cut-free sequent calculus for S5. University of Łódź, Department of Logic: Bulletin of the Section of Logic, 25(2), 95–102.
Leivant, D. (1981). On the proof theory of the modal logic for arithmetic provability. Journal of Symbolic Logic, 46(3), 531–538.
Mints, G. (2005). Cut elimination for provability logic. In Collegium Logicum 2005: Cut-Elimination.
Moen, A. (2001). The Proposed Algorithms for Eliminating Cuts in the Provability Calculus GLS do not Terminate. . http://publ.nr.no/3411. Negri, S. (2005). Proof analysis in modal logic. Journal of Philosophical Logic, 34(5–6), 507–544.
Negri, S., & von Plato, J. (2001). Structural Proof Theory. Cambridge, UK: Cambridge University Press. .
Poggiolesi, F. (2008). A cut-free simple sequent calculus for modal logic S5. The Review of Symbolic Logic, 1(1), 3–15.
Poggiolesi, F. (2009). A purely syntactic and cut-free sequent calculus for the modal logic of provability. Review of Symbolic Logic, 2(4), 593–611.
Pottinger, G. (1983). Uniform, cut-free formulations of T, S4 and S5 (abstract). Journal of Symbolic Logic, 48, 900–901.
Sambin, G., & Valentini, S. (1982). The modal logic of provability. The sequential approach. Journal of Philosophical Logic, 11(3), 311–342.
Sasaki, K. (2001). Löb’s axiom and cut-elimination theorem. Journal of the Nanzan Academic Society of Mathematical Sciences and Information Engineering, 1, 91–98.
Sato, M. (1980). A cut-free Gentzen-type system for the modal logic S5. Journal of Symbolic Logic, 45(1), 67–84.
Shimura, T. (1991). Cut-free systems for the modal logic S4.3 and S4.3Grz. Reports on Mathematical Logic, 25, 57–73.
Shimura, T. (1992). Cut-free systems for some modal logics containing S4. Reports on Mathematical Logic, 26, 39–65.
Solovay, R. M. (1976). Provability interpretations of modal logic. Israel Journal of Mathematics, 25(3–4), 287–304.
Švejdar, V. (1999). On provability logic. Nordic Journal of Philosophical Logic, 4(2), 95–116.
Takeuti, G. (1987). Proof Theory (second edition), Vol. 81 of Studies in Logic and the Foundations of Mathematics. Amsterdam: North-Holland Publishing Co.
Troelstra, A. S., & Schwichtenberg, H. (2000). Basic Proof Theory (second edition), Vol. 43 of Cambridge Tracts in Theoretical Computer Science. Cambridge, UK: Cambridge University Press.
Valentini, S. (1983). The modal logic of provability: Cut-elimination. Journal of Philosophical Logic, 12(4), 471–476.
Valentini, S. (1986). A syntactic proof of cut-elimination for GLlin. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 32(2), 137–144.
von Plato, J. (2001). A proof of Gentzen’s Hauptsatz without multicut. Archive for Mathematical Logic, 40(1), 9–18.