[1]Anderson, A. R. & Belnap, N. D. Jr. (1975). Entailment: The Logic of Relevance and Necessity, Vol. 1. Princeton, NJ: Princeton University Press.
[2]Bergman, C. (2012). Universal Algebra. Fundamentals and Selected Topics. Boca Raton, FL: CRC Press.
[3]Bergman, C. & McKenzie, R. (1990). Minimal varieties and quasivarieties. Journal of the Australian Mathematical Society Series A, 48, 133–147.
[4]Blok, W. J., Köhler, P., & Pigozzi, D. (1984). On the structure of varieties with equationally definable principal congruences II. Algebra Universalis, 18, 334–379.
[5]Blok, W. J. & Pigozzi, D. (1989). Algebraizable Logics. Memoirs of the American Mathematical Society, Vol. 396. Providence, RI: American Mathematical Society.
[6]Burris, S. & Sankappanavar, H. P. (1981). A Course in Universal Algebra. Graduate Texts in Mathematics. New York: Springer-Verlag.
[7]Dunn, J. M. (1966). The Algebra of Intensional Logics. Ph.D. Thesis, University of Pittsburgh.
[8]Dunn, J. M. (1970). Algebraic completeness results for R-mingle and its extensions. Journal of Symbolic Logic, 35, 1–13.
[9]Fried, E. & Kiss, E. W. (1983). Connection between congruence-lattices and polynomial properties. Algebra Universalis, 17, 227–262.
[10]Galatos, N. (2005). Minimal varieties of residuated lattices. Algebra Universalis, 52, 215–239.
[11]Galatos, N., Jipsen, P., Kowalski, T., & Ono, H. (2007). Residuated Lattices. An Algebraic Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathematics, Vol. 151. Amsterdam: Elsevier.
[12]Galatos, N. & Raftery, J. G. (2012). A category equivalence for odd Sugihara monoids and its applications. Journal of Pure and Applied Algebra, 216, 2177–2192.
[13]Galatos, N. & Raftery, J. G. (2015). Idempotent residuated structures: Some category equivalences and their applications. Transactions of the American Mathematical Society, 367, 3189–3223.
[14]Gorbunov, V. A. (1976). Lattices of quasivarieties. Algebra and Logic, 15, 275–288.
[15]Hart, J., Rafter, L., & Tsinakis, C. (2002). The structure of commutative residuated lattices. International Journal of Algebra and Computation, 12, 509–524.
[16]Jónsson, B. (1967). Algebras whose congruence lattices are distributive. Mathematica Scandinavica, 21, 110–121.
[17]Jońsson, B. (1972). Topics in Universal Algebra. Lecture Notes in Mathematics, Vol. 250. Berlin and New York: Springer-Verlag.
[18]Jónsson, B. (1995). Congruence distributive varieties. Mathematica Japonicae, 42, 353–401.
[19]Meyer, R. K. (1972). Conservative extension in relevant implication. Studia Logica, 31, 39–46.
[20]Meyer, R. K. (1973). On conserving positive logics. Notre Dame Journal of Formal Logic, 14, 224–236.
[21]Meyer, R. K. (1986). Sentential constants in R and R^{¬}. Studia Logica, 45, 301–327.
[22]Meyer, R. K., Dunn, J. M., & Leblanc, H. (1974). Completeness of relevant quantification theories. Notre Dame Journal of Formal Logic, 15, 97–121.
[24]Olson, J. S. & Raftery, J. G. (2007). Positive Sugihara monoids. Algebra Universalis, 57, 75–99.
[25]Slaney, J. K. (1985). 3088 varieties: A solution to the Ackermann constant problem. Journal of Symbolic Logic, 50, 487–501.
[26]Slaney, J. K. (1989). On the structure of De Morgan monoids with corollaries on relevant logic and theories. Notre Dame Journal of Formal Logic, 30, 117–129.
[27]Slaney, J. K. (1993). Sentential constants in systems near R. Studia Logica, 52, 443–455.
[28]Urquhart, A. (1984). The undecidability of entailment and relevant implication. Journal of Symbolic Logic, 49, 1059–1073.
[29]Wroński, A. (1974). The degree of completeness of some fragments of the intuitionistic propositional logic. Reports on Mathematical Logic, 2, 55–62.