Skip to main content
×
Home

WHAT RUSSELL SHOULD HAVE SAID TO BURALI–FORTI

  • SALVATORE FLORIO (a1) and GRAHAM LEACH-KROUSE (a2)
Abstract
Abstract

The paradox that appears under Burali–Forti’s name in many textbooks of set theory is a clever piece of reasoning leading to an unproblematic theorem. The theorem asserts that the ordinals do not form a set. For such a set would be–absurdly–an ordinal greater than any ordinal in the set of all ordinals. In this article, we argue that the paradox of Burali–Forti is first and foremost a problem about concept formation by abstraction, not about sets. We contend, furthermore, that some hundred years after its discovery the paradox is still without any fully satisfactory resolution. A survey of the current literature reveals one key assumption of the paradox that has gone unquestioned, namely the assumption that ordinals are objects. Taking the lead from Russell’s no class theory, we interpret talk of ordinals as an efficient way of conveying higher-order logical truths. The resulting theory of ordinals is formally adequate to standard intuitions about ordinals, expresses a conception of ordinal number capable of resolving Burali–Forti’s paradox, and offers a novel contribution to the longstanding program of reducing mathematics to higher-order logic.

Copyright
Corresponding author
*DEPARTMENT OF PHILOSOPHY UNIVERSITY OF BIRMINGHAM BIRMINGHAM, UK E-mail: s.florio@bham.ac.uk
DEPARTMENT OF PHILOSOPHY KANSAS STATE UNIVERSITY MANHATTAN, KS, USA E-mail: gleachkr@ksu.edu
References
Hide All
Boolos G. (1998). Reply to Charles Parsons’ “Sets and Classes”. In Jeffery R., editor. Logic, Logic, and Logic. Cambridge, MA: Harvard University Press, pp. 3036.
Burali-Forti C. (1897). Una questione sui numeri transfiniti. Rendiconti del circolo matematico di Palermo, 11, 154164.
Burgess J. (2004). E pluribus unum: Plural logic and set theory. Philosophia Mathematica, 12, 193221.
Cantor G. (1878). Ein Beitrag zur Mannigfaltigkeitslehre. Journal für die reine und angewandte Mathematik, 84, 242258.
Cantor G. (1883). Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Ein mathematisch-philosophischer Versuch in der Lehre des Unendlichen. Teubner, Leipzig. Translated as “Foundations of a general theory of manifolds: A mathematico-philosophical investigation into the theory of the infinite”. In Ewald W., editor. From Kant to Hilber: A Source Book in the Foundations of Mathematics, Vol. 2. Oxford University Press, 1996, pp. 878919.
Cook R. T. (2003). Iteration one more time. Notre Dame Journal of Formal Logic, 44, 6392.
Ebels-Duggan S. (2015). The nuisance principle in infinite settings. Thought, 4, 263268.
Ferreira F. (2005). Amending Frege’s Grundgesetze der Arithmetik. Synthese, 147, 319.
Ferreira F. & Wehmeier K. F. (2002). On the consistency of the ${\rm{\Delta }}_1^1 $ -CA fragment of Frege’s Grundgesetze. Journal of Philosophical Logic, 31, 301311.
Ferreirós J. (2007). Labyrinth of Thought: A History of Set Theory and its Role in Modern Mathematics. Basel: Birkhäuser.
Florio S. & Linnebo Ø. (in progress). The Many and the One: A Philosophical Study.
Frege G. (1884). Grundlagen der Arithmetik. Translated by Austin J. L. as The Foundations of Arithmetic (second revised edition). Blackwell, 1974.
Frege G. (1979). Posthumous writings. In Hermes H., Kambartel F., and Kaulbach F., editors. Posthumous Writings. Oxford: Basil Blackwell.
Glanzberg M. (2004). Quantification and realism. Philosophy and Phenomenological Research, 69, 541571.
Glanzberg M. (2006). Context and unrestricted quantification. In Rayo A. and Uzquiano G., editors. Absolute Generality. Oxford: Oxford University Press, pp. 2044.
Gödel K. (1944). Russell’s mathematical logic. In Feferman S., editor. Collected Works, Volume II, Publications 1938–1974. Oxford: Oxford University Press, 1990, pp. 119143.
Gödel K. (1964). What is Cantor’s continuum problem? In Feferman S., editor. Collected Works, Volume II, Publications 1938–1974. Oxford: Oxford University Press, 1990, pp. 176188.
Grassmann H. (1844). Die lineale Ausdehnungslehre: ein neuer Zweig der Mathematik . Wigand Otto. Translated by Lloyd C. Kannenberg in A New Branch of Mathematics. The Ausdehnungslehre of 1844 and Other Works. Chicago, Open Court: 1995.
Grassmann H. 1847. Geometrische Analyse geknüpft an die von Leibniz erfundene geometrische Charakteristik. Gekrönte Preisschrift, Leipzig: Wiedmann. Translated by Kannenberg Lloyd C. in A New Branch of Mathematics. The Ausdehnungslehre of 1844 and Other Works, Open Court, 1995.
Hazen A. P. (1986). Logical objects and the paradox of Burali-Forti. Erkenntnis, 24, 283291.
Heath T. L. (editor) (1908). The Thirteen Books of the Elements, Vol. 2. Cambridge, UK: Cambridge University Press.
Heck R. (1996). The consistency of predicative fragments of Frege’s Grundgesetze der Arithmetik. History and Philosophy of Logic, 17, 209220.
Hellman G. (2011). On the significance of the Burali-Forti paradox. Analysis, 71, 631637.
Hodes H. (1986). Logicism and the ontological commitments of arithmetic. Journal of Philosophy, 81, 123149.
Jourdain P. E. B. (1904). On the transfinite cardinal numbers of well-ordered aggregates. Philosophical Magazine, 7, 6175.
Klement K. C. (in press). A generic Russellian elimination of abstract objects. Philosophia Mathematica.
Leibniz G. W. (1989). Philosophical Papers and Letters. Dordrecht: Kluwer Academic Publishers.
Linnebo Ø. (2004). Predicative fragments of Frege Arithmetic. Bulletin of Symbolic Logic, 10, 153174.
Linnebo Ø. (2010). Pluralities and sets. Journal of Philosophy, 107, 144164.
Linnebo Ø. & Pettigrew R. (2014). Two types of abstraction for structuralism. Philosophical Quarterly, 64, 267283.
Mancosu P. (2015). Grundlagen, section 64: Freges discussion of definitions by abstraction in historical context. History and Philosophy of Logic, 36, 6289.
Moore G. H. & Garciadiego A. (1981). Burali-Forti’s paradox: A reappraisal of its origins. Historia Mathematica, 8, 319350.
Parsons C. (1974a). The liar paradox. Journal of Philosophical Logic, 3, 381412.
Parsons C. (1974b). Sets and classes. Noûs, 8, 112.
Poincaré H. (1912). The latest efforts of the logisticians. The Monist, 22, 524539.
Russell B. (1903). The Principles of Mathematics (second edition). New York: W.W. Norton and Company.
Russell B. (1905). On some difficulties in the theory of transfinite numbers and order types. Proceedings of the London Mathematical Society, 4, 2935.
Russell B. (1908). Mathematical logic as based on a theory of types. American Journal of Mathematics, 30, 222262.
Russell B. (1910). Some explanations in reply to Mr. Bradley. Mind, 19, 373378.
Shapiro S. (2003). All sets great and small: And I do mean ALL. Philosophical Perspectives, 17, 467490.
Shapiro S. (2007). Burali-Forti’s revenge. In Beall J., editor. Revenge of the Liar: New Essays on the Paradox. Oxford: Oxford University Press, pp. 320344.
Shapiro S. & Weir A. (1999). New V, ZF and abstraction. Philosophia Mathematica, 7, 293321.
Shapiro S. & Wright C. (2006). All things indefinitely extensible. In Rayo A. and Uzquiano G., editors. Absolute Generality. Oxford: Oxford University Press, pp. 253304.
Simpson S. (2009). Subsystems of Second Order Arithmetic. Cambridge, UK: Cambridge University Press.
Studd J. P. (2016). Abstraction reconceived. British Journal for the Philosophy of Science, 67, 579615.
Uzquiano G. (2003). Plural quantification and classes. Philosophia Mathematica, 11, 6781.
Walsh S. (in press). Fragments of Frege’s Grundgesetze and Gödels constructible universe. Journal of Symbolic Logic.
Walsh S. & Ebels-Duggan S. (2015). Relative categoricity and abstraction principles. Review of Symbolic Logic, 8, 572606.
Wright C. (1999). Is Hume’s Principle analytic? Notre Dame Journal of Formal Logic, 40, 630.
Zermelo E. (1930). Über Grenzzahlen und Mengenbereiche: Neue Untersuchungen über die Grundlagen der Mengenlehre. Fundamenta Mathematicae, 16, 29–47. Translated as “On Boundary Numbers and Domains of Sets: New Investigations in the Foundations of Set Theory”. In Ewald W., editor. From Kant to Hilber: A Source Book in the Foundations of Mathematics, Vol. 2. Oxford University Press, 1996, pp. 12191233.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Review of Symbolic Logic
  • ISSN: 1755-0203
  • EISSN: 1755-0211
  • URL: /core/journals/review-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 49 *
Loading metrics...

Abstract views

Total abstract views: 295 *
Loading metrics...

* Views captured on Cambridge Core between 27th February 2017 - 18th November 2017. This data will be updated every 24 hours.