Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-p6h7k Total loading time: 0.315 Render date: 2022-05-18T13:13:43.643Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Non-deep simple morphophysiological dormancy in seeds of Viburnum lantana (Caprifoliaceae), a new dormancy level in the genus Viburnum

Published online by Cambridge University Press:  26 November 2014

Alejandro Santiago*
Affiliation:
Institute of Botany, University of Castilla-La Mancha, Botanical Garden of Castilla-La Mancha, Campus Universitario s/n, 02071Albacete, Spain
Pablo Ferrandis
Affiliation:
Institute of Botany, University of Castilla-La Mancha, Botanical Garden of Castilla-La Mancha, Campus Universitario s/n, 02071Albacete, Spain Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario s/n, 02071Albacete, Spain
José M. Herranz
Affiliation:
Institute of Botany, University of Castilla-La Mancha, Botanical Garden of Castilla-La Mancha, Campus Universitario s/n, 02071Albacete, Spain Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario s/n, 02071Albacete, Spain
*
*Correspondence E-mail: asantigon@gmail.com

Abstract

Seed germination requirements of Viburnum lantana were investigated by experiments both in the laboratory and outdoors. Embryo length, radicle emergence and shoot emergence were analysed to determine the level of morphophysiological dormancy (MPD) of seeds. Mean embryo length in fresh seeds was 1.30 mm, and required growth to at least 2.51 mm to germinate. The critical embryo length was 4.1 mm. In the laboratory, the embryo reached 3 mm length after 20 weeks of warm-temperature incubation (20/7 or 25/10°C), which in fact represents a combination of warm + cold stratification. In seeds subjected to cold stratification (1.5 or 5°C) for 24 weeks, embryos hardly grew. Gibberellic acid stimulated embryo growth and germination. In the outdoor phenology test, the embryos grew from 1.30 mm, i.e. fresh seeds sown in September, to 2.98 mm at the end of the following March. In the ‘move-along’ test (laboratory), starting with temperatures of warm stratification [i.e. 25/10°C (4 weeks) →  20/7°C (4 weeks) →  15/4°C (4 weeks) →  5°C (12 weeks) →  15/4°C (4 weeks)], and in the outdoor phenology study on seeds exposed to a similar temperature sequence, radicle emergence percentages reached 73% after 28 and 35 weeks, respectively. V. lantana does not exhibit a delay between root and shoot emergence, dismissing any kind of epicotyl dormancy. Seeds of V. lantana have non-deep simple MPD, a level not detected previously in the genus Viburnum, with the physiological dormancy component overcome by a combination of warm and cold stratification, preferably in that order.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. (1927) The germination of the seeds of some plants with fleshy fruits. American Journal of Botany 14, 415428.CrossRefGoogle Scholar
Barton, L.V. (1958) Germination and seedling production of species of Viburnum . Proceedings of the Plant Propagators Society 8, 126134.Google Scholar
Baskin, C.C. and Baskin, J.M. (1990) Germination ecophysiology of seeds of the winter annual Chaerophyllum tainturieri: a new type of morphophysiological dormancy. Journal of Ecology 78, 9931004.CrossRefGoogle Scholar
Baskin, C.C. and Baskin, J.M. (1998) Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego, Academic Press.Google Scholar
Baskin, C.C. and Baskin, J.M. (2004) Determining dormancy-breaking and germination requirements from the fewest seeds. pp. 162179 in Guerrant, E.O.; Havens, K.; Maunder, M. (Eds) Ex situ plant conservation. Supporting species survival in the wild. Washington, Island Press.Google Scholar
Baskin, C.C., Baskin, J.M. and Chester, E.W. (2001) Morphophysiological dormancy in seeds of Chamaelirium luteum, a long-lived dioecious lily. Journal of the Torrey Botanical Society 128, 715.CrossRefGoogle Scholar
Baskin, C.C., Milberg, P., Andersson, L. and Baskin, J.M. (2002) Non-deep simple morphophysiological dormancy in seeds of the facultative winter annual Papaver rhoeas . Weed Research 42, 194202.CrossRefGoogle Scholar
Baskin, C.C., Chien, C.T., Chen, S.Y. and Baskin, J.M. (2008) Germination of Viburnum odoratissimum seeds: a new level of morphophysiological dormancy. Seed Science Research 18, 179184.CrossRefGoogle Scholar
Baskin, C.C., Chen, S.Y., Chien, C.T. and Baskin, J.M. (2009) Overview of seed dormancy in Viburnum (Caprifoliaceae). Propagation of Ornamental Plants 9, 115121.Google Scholar
Baskin, J.M. and Baskin, C.C. (1994) Nondeep simple morphophysiological dormancy in seeds of the mesic woodland winter annual Corydalis flavula (Fumariaceae). Bulletin of the Torrey Botanical Club 121, 4046.CrossRefGoogle Scholar
Bezdeckova, L., Reznickova, J. and Prochazkova, Z. (2009) Germination of stratified seeds and emergence of non-stratified seeds and fruits of Viburnum lantana, Euonymus europaeus and Staphylea pinnata . Zprávy Lesnickeho Výzkumu 54, 275285.Google Scholar
Chien, C.T., Chen, S.Y., Tsai, C.C., Baskin, J.M., Baskin, C.C. and Kuo-Huang, L.L. (2011a) Deep simple epicotyl morphophysiological dormancy in seeds of two Viburnum species, with special reference to shoot growth and development inside the seed. Annals of Botany 108, 1322.CrossRefGoogle ScholarPubMed
Chien, C.T., Chen, S.Y., Chien, T.Y., Baskin, J.M. and Baskin, C.C. (2011b) Nondeep simple morphophysiological dormancy in seeds of Ilex maximowicziana from northern (subtropical) and southern (tropical) Taiwan. Ecological Restoration 26, 163171.CrossRefGoogle Scholar
Copete, E., Herranz, J.M., Copete, M.A., Baskin, C.C. and Baskin, J.M. (2011a) Nondeep complex morphophysiological dormancy in seeds of the Iberian Peninsula endemic geophyte Merendera montana (Colchicaceae). Seed Science Research 21, 267281.CrossRefGoogle Scholar
Copete, E., Herranz, J.M., Copete, M.A., Baskin, C.C. and Baskin, J.M. (2011b) Physiology, morphology and phenology of seed dormancy-break and germination in the endemic Iberian species Narcissus hispanicus (Amaryllidaceae). Annals of Botany 107, 10031016.CrossRefGoogle Scholar
Elias, F. and Ruiz, L. (1981) Estudio agroclimatico de la región de Castilla-La Mancha. Toledo, Consejería de Agricultura, Junta de Comunidades de Castilla-La Mancha.Google Scholar
Giersbach, J. (1937) Germination and seedling production of species of Viburnum . Contributions from Boyce Thompson Institute 9, 7990.Google Scholar
Herranz, J.M., Copete, M.A., Ferrandis, P. and Copete, E. (2010) Intermediate complex morphophysiological dormancy in the endemic Iberic Aconitum napellus subsp. castellanum (Ranunculaceae). Seed Science Research 20, 109121.CrossRefGoogle Scholar
Herrera, C.M. (1982) Seasonal variation in the quality of fruits and diffuse coevolution between plants and avian dispersers. Ecology 63, 773785.CrossRefGoogle Scholar
Herrera, C.M., Manzaneda, A., Benavente, A., Luque, P. and Jordano, P. (2000) Viburnum lantana L . pp. 366370 in Blanca, G.; Cabezudo, B.; Hernández-Bermejo, J.E.; Herrera, C.M.; Muñoz, J.; Valdés, B. (Eds) Libro rojo de la flora silvestre amenazada de Andalucía. Tomo II. Especies vulnerables. Sevilla, Spain, Junta de Andalucía.Google Scholar
Herrero, N. and Villar-Salvador, P. (2013) Viburnum lantana L., V. opulus L., Viburnum tinus L. pp. 598612 in Peman, J.; Navarro, R.; Nicolás, J.L.; Prada, M.A.; Serrada, R. (Eds) Producción y manejo de semillas y plantas forestales. Madrid, Organismo Autónomo Parques Nacionales.Google Scholar
Hidayati, S.N., Baskin, J.M. and Baskin, C.C. (2005) Epicotyl dormancy in Viburnum acerifolium (Caprifoliaceae). The American Midland Naturalist 153, 232244.CrossRefGoogle Scholar
Karlsson, L.M., Hidayati, S.N., Walck, J.L. and Milberg, P. (2005) Complex combination of seed dormancy and seedling development determine emergence of Viburnum tinus (Caprifoliaceae). Annals of Botany 95, 323330.CrossRefGoogle Scholar
Martín-Herrero, J., Cirujano, S., Moreno, M., Peris, J.B. and Stubing, G. (2003) La vegetación protegida en Castilla-La Mancha. Toledo, Junta de Comunidades de Castilla-La Mancha.Google Scholar
Mayer, A.M. and Poljakoff-Mayber, A. (1989) The germination of seeds. Oxford, Pergamon Press.Google Scholar
Phartyal, S.S., Kondo, T., Hoshino, Y., Baskin, C.C. and Baskin, J.M. (2009) Morphological dormancy in seeds of the autumn-germinating shrub Lonicera caerulea var. emphyllocalyx (Caprifoliaceae). Plant Species Biology 24, 2026.CrossRefGoogle Scholar
Piotto, B. and Di Noi, A. (2003) Seed propagation of Mediterranean trees and shrubs (Manuali e linee guida). Rome, Italy, Agency for the Protection of the Environment and for Technical Services (APAT).Google Scholar
Ruiz de la Torre, J. (2006) Flora Mayor. Madrid, Organismo Autónomo Parques Nacionales, Dirección General para la Biodiversidad.Google Scholar
Ruiz-Téllez, T. and Devesa, J.A. (2007) Lonicerae . pp. 168–187 in Castroviejo, S.; Benedí, C.; Rico, E.; Güemes, J.; Herrero, A. (Eds) Flora Iberica: plantas vasculares de la Península Ibérica e Islas Baleares, Vol.15. Madrid, Spain, Consejo Superior de Investigaciones Científicas, Real Jardín Botánico.Google Scholar
Santiago, A., Herranz, J.M., Copete, E. and Ferrandis, P. (2013) Species-specific environmental requirements to break seed dormancy: implications for selection of regeneration niches in three Lonicera (Caprifoliaceae) species. Botany 91, 225233.CrossRefGoogle Scholar
Vandelook, F., Bolle, N. and Van Assche, J.A. (2007) Multiple environmental signals required for embryo growth and germination of seeds of Selinum carvifolia (L.) L. and Angelica sylvestris L. (Apiaceae). Seed Science Research 17, 283291.CrossRefGoogle Scholar
Vandelook, F., Bolle, N. and Van Assche, J.A. (2008) Seasonal dormancy cycles in the biennial Torilis japonica (Apiaceae), a species with morphophysiological dormancy. Seed Science Research 18, 161171.CrossRefGoogle Scholar
Vandelook, F., Bolle, N. and Van Assche, J.A. (2009) Morphological and physiological dormancy in seeds of Aegopodium podagraria (Apiaceae) broken successively during cold stratification. Seed Science Research 19, 115123.CrossRefGoogle Scholar
Walck, J.L. and Hidayati, S.N. (2004) Germination ecophysiology of the western North American species Osmorhiza depauperata (Apiacaeae) implications of preadaptation and phylogenetic niche conservation in seed dormancy evolution. Seed Science Research 14, 387394.CrossRefGoogle Scholar
Walck, J.L., Baskin, C.C. and Baskin, J.M. (1999) Seeds of Thalictrum mirabile (Ranunculaceae) require cold stratification for loss of nondeep simple morphophysiological dormancy. Canadian Journal of Botany 77, 17691776.CrossRefGoogle Scholar
Walck, J.L., Karlsson, L.M., Milberg, P., Hidayati, S.N. and Kondo, T. (2012) Seed germination and seedling development ecology in world-wide populations of a circumboreal Tertiary relict. AoB plants 2012, pls007.Google ScholarPubMed
Winkworth, R.C. and Donoghue, M.J. (2005) Viburnum phylogeny based on combined molecular data: implications for taxonomy and biogeography. American Journal of Botany 92, 653666.CrossRefGoogle ScholarPubMed
4
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Non-deep simple morphophysiological dormancy in seeds of Viburnum lantana (Caprifoliaceae), a new dormancy level in the genus Viburnum
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Non-deep simple morphophysiological dormancy in seeds of Viburnum lantana (Caprifoliaceae), a new dormancy level in the genus Viburnum
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Non-deep simple morphophysiological dormancy in seeds of Viburnum lantana (Caprifoliaceae), a new dormancy level in the genus Viburnum
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *