Skip to main content Accessibility help
Hostname: page-component-55597f9d44-xbgml Total loading time: 0.439 Render date: 2022-08-08T04:08:48.207Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Progress in research on dry afterripening

Published online by Cambridge University Press:  06 January 2011

Raquel Iglesias-Fernández
Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros Agrónomos, Campus de Montegancedo, 28223-Pozuelo de Alarcón, Madrid, Spain
María del Carmen Rodríguez-Gacio
Departamento de Fisiología Vegetal, Universidad de Santiago de Compostela, 15782Santiago de Compostela, Spain
Angel J. Matilla*
Departamento de Fisiología Vegetal, Universidad de Santiago de Compostela, 15782Santiago de Compostela, Spain
*Correspondence Fax: +34 981 593 054 Email:


The transition from the dormant to the non-dormant state of a viable and mature seed can take place at low hydration by exposure to air-dry storage conditions (dry afterripening; AR). The events occurring during this loss of dormancy are of considerable physiological, ecological and agricultural interest. AR may be attributable to increased sensitivity to germination-stimulating factors and a widening of the temperature window for germination. Genetic, –omics and physiological studies on this mode of dormancy breaking provide support for a key role of the balance between gibberellin (GA) and abscisic acid (ABA) metabolism and sensitivity. Recent evidence also supports a possible role for ethylene (ET) in this complex signalling network that is necessary for AR implementation. However, hormone-independent signals, such as reactive oxygen species (ROS), nitrate () or nicotinamide adenine dinucleotide (NAD+), also appear to be involved. The way in which hormone- and non-hormone-signalling pathways affects each other (cross-talk) is still under study. This review provides updated information on the programmes that overcome seed dormancy. Thus, we have reviewed: (1) the –omic status in dry seeds; (2) the relationship between temperature and nitrate signalling and AR; (3) alterations in ABA/GA synthesis and signalling; (4) the action of hormone molecules other than ABA and GA (i.e. ET, salicylic and jasmonic acids); and (5) participation of reactive oxygen species (ROS), NAD+ and protein carbonylation. Taken together, the acquisition and implementation of dry AR involve a complex signalling network that is difficult to disentangle.

Research Review
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Alboresi, A., Gestin, C., Leydecker, M.T., Bedu, M., Meyer, C. and Truong, H.N. (2005) Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant, Cell & Environment 28, 500512.CrossRefGoogle ScholarPubMed
Ali-Rachedi, S., Bouinot, D., Wagner, M.H., Bonnet, M., Sotta, B., Grappin, P. and Jullien, M. (2004) Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219, 479488.CrossRefGoogle ScholarPubMed
Allen, P.S. (2003) When and how many? Hydrothermal models and the prediction of seed germination. New Phytologist 158, 13.CrossRefGoogle Scholar
Allen, P.S., Benech-Arnold, R.L., Batlla, D. and Bradford, K.J. (2007) Modeling of seed dormancy. pp. 72112 in Bradford, K.J.; Nonogaki, H. (Eds) Seed development, dormancy and germination. Annual Plant Reviews, Vol. 27. Sheffield, UK, Blackwell Publishing.CrossRefGoogle Scholar
Alonso-Blanco, C., Bentsink, L., Hanhart, C.J., Blankestijn-de Vries, H. and Koornneef, M. (2003) Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genetics 164, 711729.Google ScholarPubMed
Alvarado, V. and Bradford, K.J. (2002) A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell & Environment 25, 10611069.CrossRefGoogle Scholar
Bailly, C. (2004) Active oxygen species and antioxidants in seed biology. Seed Science Research 14, 93107.CrossRefGoogle Scholar
Bailly, C., El-Maarouf-Bouteau, H. and Corbineau, F. (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. Comptes Rendus Biologies 331, 806814.CrossRefGoogle ScholarPubMed
Bair, N.B., Meyer, S.E. and Allen, P.S. (2006) A hydrothermal after-ripening time model for seed dormancy loss in Bromus tectorum L. Seed Science Research 16, 1728.CrossRefGoogle Scholar
Barrero, J.M., Talbot, M.J., White, R.G., Jacobsen, J.V. and Gubler, F. (2009) Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. Plant Physiology 150, 10061021.CrossRefGoogle ScholarPubMed
Baskin, J.M. and Baskin, C.C. (2004) A classification system for seed dormancy. Seed Science Research 14, 116.CrossRefGoogle Scholar
Batak, I., Devi, M., Giba, Z., Grubisi, D., Poff, K.L. and Konjevic, R. (2002) The effects of potassium nitrate and NO-donors on phytochrome A- and phytochrome B-specific induced germination of Arabidopsis thaliana seeds. Seed Science Research 12, 253259.CrossRefGoogle Scholar
Batlla, D. and Benech-Arnold, R.L. (2006) The role of fluctuations in soil water content on the regulation of dormancy changes in buried seeds of Polygonum aviculare L. Seed Science Research 16, 4759.CrossRefGoogle Scholar
Benech-Arnold, R.L., Sánchez, R.A., Forcella, F., Kruk, B.C. and Ghersa, C.M. (2000) Environmental control of dormancy in weed seed banks in soil. Field Crops Research 67, 105122.CrossRefGoogle Scholar
Bentsink, L. and Koornneef, M. (2008) Seed dormancy and germination. pp. 118 in Last, R.; Chang, C.; Graham, J.; Leyser, D.; McClung, R.; Weimig, C. (Eds) The Arabidopsis book. Rockville, Maryland, American Society of Plant Biologists.Google Scholar
Bentsink, L. and Soppe, W.J.J. (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytologist 179, 3354.Google Scholar
Bentsink, L., Jowett, J., Hanhart, C.J. and Koornneef, M. (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proceedings of the National Academy of Sciences, USA 103, 1704217047.CrossRefGoogle ScholarPubMed
Bentsink, L., Hanson, J., Hanhart, C., Blankestijn-de Vries, H., Coltrane, C., Keizer, P., El-Lithy, M., Alonso-Blanco, C., de Andrés, M.T., Reymond, M., van Eeuwijk, F., Smeekens, S. and Koornneef, M. (2010) Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular pathways. Proceedings of the National Academic of Sciences, USA 107, 42644269.CrossRefGoogle ScholarPubMed
Bethke, P.C., Libourel, I.G., Reinöhl, V. and Jones, R.L. (2006) Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner. Planta 223, 805812.CrossRefGoogle Scholar
Black, M., Bewley, J.D. and Halmer, P. (Eds) (2006) The encyclopedia of seeds: science, technology and uses. Wallingford, UK, CABI Publishing.Google Scholar
Bove, J., Lucas, P., Godin, B., Oge, L., Jullien, M. and Grappin, P. (2005) Gene expression analysis by cDNA-AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in Nicotiana plumbaginifolia. Plant Molecular Biology 57, 593612.CrossRefGoogle ScholarPubMed
Bradford, K.J. (1995) Water relations in seed germination. pp. 351396 in Kigel, J.; Galili, G. (Eds) Seed development and germination. New York, Marcel Dekker.Google Scholar
Bradford, K.J. (2002) Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science 50, 248260.CrossRefGoogle Scholar
Bradford, K.J. (2005) Threshold models applied to seed germination ecology. New Phytologist 165, 338341.CrossRefGoogle ScholarPubMed
Bradford, K.J., Benech-Arnold, R., Côme, D. and Corbineau, F. (2008) Quantifying the sensitivity of barley seed germination to oxygen, abscisic acid and gibberellin using a population-based threshold model. Journal of Experimental Botany 59, 335347.CrossRefGoogle ScholarPubMed
Carrera, E., Holman, T., Medhurst, A., Dietrich, D., Footitt, S., Theodoulou, F.L. and Holdsworth, M. (2008) Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. Plant Journal 53, 214224.CrossRefGoogle ScholarPubMed
Chantre, G.R., Batlla, D., Sabbatini, M.R. and Orioli, G. (2009) Germination parameterization and development of an after-ripening thermal-time model for primary dormancy release of Lithospermum arvense seeds. Annals of Botany 103, 12911301.CrossRefGoogle ScholarPubMed
Chantre, G.R., Sabbatini, M.R. and Orioli, G. (2010) An after-ripening thermal-time model for Lithospermum arvense seeds based on changes in population hydrotime parameters. Weed Research 50, 218227.CrossRefGoogle Scholar
Chibani, K., Ali-Rachedi, S., Job, C., Job, D., Jullien, M. and Grappin, P. (2006) Proteomic analysis of seed dormancy in Arabidopsis. Plant Physiology 142, 14931510.CrossRefGoogle ScholarPubMed
Chopin, F., Orsel, M., Dorbe, M.F., Chardon, F., Truong, H.N., Miller, A.J., Krapp, A. and Daniel-Vedele, F. (2007) The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds. Plant Cell 19, 15901602.CrossRefGoogle ScholarPubMed
Corbineau, F. and Côme, D. (2003) Involvement of energy metabolism and ABA in primary and secondary dormancies in oat (Avena sativa L.) seeds – a physiological approach. pp. 113120 in Nicolás, G.; Bradford, K.J.; Pritchard, H.W. (Eds) The biology of seeds: secent research advances. London, CAB International.Google Scholar
De Smet, I., Lau, S., Mayer, U. and Jürgens, G. (2010) Embryogenesis – the humble beginnings of plant life. Plant Journal 61, 959970.CrossRefGoogle ScholarPubMed
Donohue, K. (2002) Germination timing influences natural selection on life-history characters in Arabidopsis thaliana. Ecology 83, 10061016.CrossRefGoogle Scholar
El-Maarouf-Bouteau, H. and Bailly, C. (2008) Oxidative signalling in seed germination and dormancy. Plant Signaling & Behavior 3, 175182.CrossRefGoogle Scholar
El-Maarouf-Bouteau, H., Job, C., Job, D., Corbineau, F. and Bailly, C. (2007) ROS signalling in seed dormancy alleviation. Plant Signaling & Behavior 2, 362364.CrossRefGoogle Scholar
Fang, J. and Chu, C. (2008) Abscisic acid and the pre-harvest sprouting in cereals. Plant Signaling & Behavior 3, 10461048.CrossRefGoogle ScholarPubMed
Finch-Savage, W.E. and Leubner-Metzger, G. (2006) Seed dormancy and the control of germination. New Phytologist 171, 501523.CrossRefGoogle ScholarPubMed
Finch-Savage, W.E., Cadman, C.S., Toorop, P.E., Lynn, J.R. and Hilhorst, H.W. (2007) Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directly by environment specific sensing. Plant Journal 51, 6078.CrossRefGoogle Scholar
Finkelstein, R.R., Reevers, W., Ariizumi, T. and Steber, C. (2008) Molecular aspects of seed dormancy. Annual Review of Plant Biology 59, 387415.CrossRefGoogle ScholarPubMed
Foley, M.E. (2001) Seed dormancy: an update on terminology, physiological genetics, and quantitative trait loci regulating germinability. Weed Science 49, 305317.CrossRefGoogle Scholar
Foley, M.E. (2008) Temperature and moisture status affect afterripening of leafy spurge (Euphorbia esula) seeds. Weed Science 56, 237243.CrossRefGoogle Scholar
Foyer, C.H. and Noctor, G. (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17, 18661875.CrossRefGoogle Scholar
Garnczarska, M., Bednarski, W. and Jancelewicz, M. (2009) Ability of lupine seeds to germinate and to tolerate desiccation as related to changes in free radical level and antioxidants in freshly harvested seeds. Plant Physiology and Biochemistry 47, 5662.CrossRefGoogle ScholarPubMed
Garvin, S.C. and Meyer, S.E. (2003) Multiple mechanisms for seed dormancy regulation in shadscale (Atriplex confertifolia: Chenopodiaceae). Canadian Journal of Botany 81, 601610.CrossRefGoogle Scholar
Gerjets, T., Scholefield, D., Foulkes, M.J., Lenton, J.R. and Holdsworth, M.J. (2010) An analysis of dormancy, ABA responsiveness, after-ripening and pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.) caryopses. Journal of Experimental Botany 61, 597607.CrossRefGoogle ScholarPubMed
Graeber, K., Linkies, A., Müller, K., Wunchova, A., Rott, A. and Leubner-Metzger, G. (2010) Cross-species approaches to seed dormancy and germination: conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes. Plant Molecular Biology 73, 6787.CrossRefGoogle ScholarPubMed
Grappin, P., Bouinot, D., Sotta, B., Miginiac, E. and Jullien, M. (2000) Control of seed dormancy in Nicotiana plumbaginifolia: post-imbibition ABA synthesis imposes dormancy maintenance. Planta 210, 279285.CrossRefGoogle ScholarPubMed
Gubler, F., Millar, A.A. and Jacobsen, J.V. (2005) Dormancy release, ABA and pre-harvest sprouting. Current Opinion in Plant Biology 8, 183187.CrossRefGoogle ScholarPubMed
Gubler, F., Hughes, T., Waterhouse, P. and Jacobsen, J. (2008) Regulation of dormancy in barley by blue light and after-ripening: effects on abscisic acid and gibberellin metabolism. Plant Physiology 147, 886896.CrossRefGoogle ScholarPubMed
Gutiérrez, L., Van Wuytswinkel, O., Castelain, M. and Bellini, C. (2007) Combined networks regulating seed maturation. Trends in Plant Science 12, 294300.CrossRefGoogle ScholarPubMed
Holdsworth, M.J., Bentsink, L. and Soppe, W.J. (2008 a) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytologist 179, 3354.CrossRefGoogle ScholarPubMed
Holdsworth, M.J., Finch-Savage, W.E., Grappin, P. and Job, D. (2008 b) Post-genomics dissection of seed dormancy and germination. Trends in Plant Science 13, 713.CrossRefGoogle ScholarPubMed
Holman, T.J., Jones, P.D., Russell, L., Holman, T.J., Jones, P.D., Russell, L., Medhurst, A., Úbeda-Tomás, S., Talloji, P., Márquez, J., Schmuths, H., Tung, S.A., Taylor, I., Footitt, S., Bachmair, A., Theodoulou, F.L. and Holdsworth, M.J. (2009) The N-end rule pathway promotes seed germination and establishment through removal of ABA sensitivity in Arabidopsis. Proceedings of the National Academy of Sciences, USA 106, 45494554.CrossRefGoogle ScholarPubMed
Hunt, L. and Gray, J.E. (2009) The relationship between pyridine nucleotides and seed dormancy. New Phytologist 181, 6270.CrossRefGoogle ScholarPubMed
Hunt, L., Lerner, F. and Zeigler, M. (2004) NAD – new roles in signalling and gene regulation in plants. New Phytologist 163, 3144.CrossRefGoogle Scholar
Hunt, L., Holdsworth, M.J. and Gray, J.E. (2007) Nicotinamidase activity is important for germination. Plant Journal 51, 341351.CrossRefGoogle ScholarPubMed
Iglesias-Fernández, R. and Matilla, A.J. (2009) After-ripening alters the gene expression pattern of oxidases involved in the ethylene and gibberellin pathways during early imbibition of Sisymbrium officinale L. seeds. Journal of Experimental Botany 60, 16451661.CrossRefGoogle ScholarPubMed
Iglesias-Fernández, R. and Matilla, A.J. (2010) Genes involved in ethylene and gibberellins metabolism are required for endosperm-limited germination of Sisymbrium officinale L. seeds. Planta 231, 653664.CrossRefGoogle ScholarPubMed
Iglesias-Fernández, R., Rodríguez-Gacio, M.C., Barrero-Sicilia, C., Carbonero, P. and Matilla, A.J. (2010) Three endo-β-mannanase genes expressed in the micropylar endosperm and in the radicle influence germination of Arabidopsis thaliana seeds. Planta (in press) doi: 10.1007/s00425-010-1257-Z.Google ScholarPubMed
Jacobsen, J.V., Pearce, D.W., Poole, A.T., Pharis, R.P. and Mander, R.L. (2002) Abscisic acid, phaseic acid and gibberellin contents associated with dormancy and germination in barley. Physiologia Plantarum 115, 428441.CrossRefGoogle ScholarPubMed
Job, C., Rajjou, L., Lovigny, Y., Belghazi, M. and Job, D. (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiology 138, 790802.CrossRefGoogle ScholarPubMed
Kermode, A.R. (2005) Role of abscisic acid in seed dormancy. Journal of Plant Growth Regulation 24, 319344.CrossRefGoogle Scholar
Kibinza, S., Vinel, D., Côme, D., Bailly, C. and Corbineau, F. (2006) Sunflower seed deterioration as related to moisture content during aging, energy metabolism and active oxygen species scavenging. Physiologia Plantarum 128, 496506.CrossRefGoogle Scholar
Krouk, G., Crawford, N.M., Coruzzi, G.M. and Tsay, Y.F. (2010) Nitrate signaling: adaptation to fluctuating environments. Current Opinion in Plant Biology 13, 266273.CrossRefGoogle ScholarPubMed
Kucera, B., Cohn, M.A. and Leubner-Metzger, G. (2005) Plant hormone interactions during seed dormancy release and germination. Seed Science Research 15, 281307.CrossRefGoogle Scholar
Kushiro, T., Okamoto, M., Nakabayashi, K., Yamagishi, K., Kitamura, S., Asami, T., Hirai, N., Koshiba, T., Kamiya, Y. and Nambara, E. (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO Journal 23, 16471656.CrossRefGoogle ScholarPubMed
Leubner-Metzger, G. (2005) β-1,3-Glucanase gene expression in low-hydrated seeds as a mechanism for dormancy release during tobacco after-ripening. Plant Journal 41, 133145.CrossRefGoogle ScholarPubMed
Leymarie, J., Bruneaux, E., Gibot-Leclerc, S. and Corbineau, F. (2007) Identification of transcripts potentially involved in barley seed germination and dormancy using cDNA-AFLP. Journal of Experimental Botany 58, 425437.CrossRefGoogle ScholarPubMed
Linkies, A., Graeber, K., Knight, Ch. and Leubner-Metzger, G. (2010) The evolution of seeds. New Phytologist 186, 817831.CrossRefGoogle ScholarPubMed
Manz, B., Müller, K., Kucera, B., Volke, F. and Leubner-Metzger, G. (2005) Water uptake and distribution in germinating tobacco seed investigated in vivo by nuclear magnetic resonance imaging. Plant Physiology 138, 15381551.CrossRefGoogle ScholarPubMed
Matakiadis, T., Alboresi, A., Jikumaru, Y., Tatematsu, K., Pichon, O., Renou, J-P., Kamiya, Y., Nambara, E. and Truong, H-N. (2009) The Arabidopsis abscisic acid catabolic gene CYP707A2 plays a key role in nitrate control of seed dormancy. Plant Physiology 149, 949960.CrossRefGoogle Scholar
Matilla, A.J. (2007) How is the silique fruit dismantled over its maturation? Functional Plant Science and Biotechnology 1, 8593.Google Scholar
Matilla, A.J. and Matilla-Vázquez, M.A. (2008) Involvement of ethylene in seed physiology. Plant Science 175, 8797.CrossRefGoogle Scholar
Meyer, S.E., Debaene-Gil, S.B. and Allen, P.S. (2000) Using hydrothermal time concepts to model seed germination response to temperature, dormancy loss and priming effects in Elymus elymoides. Seed Science Research 10, 213223.CrossRefGoogle Scholar
Millar, A.A., Jacobsen, J.V., Ross, J.J., Helliwell, C.A., Poole, A.T., Scofield, G., Reid, J.B. and Gubler, F. (2006) Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8′-hydroxylase. Plant Journal 45, 942954.CrossRefGoogle ScholarPubMed
Møller, I.M., Jensen, P.E. and Hansson, A. (2007) Oxidative modifications to cellular components in plants. Annual Review of Plant Biology 58, 459481.CrossRefGoogle ScholarPubMed
Müller, K., Carstens, A.C., Linkies, A., Torres, M.A. and Leubner-Metzger, G. (2009) The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after-ripening. New Phytologist 184, 885897.CrossRefGoogle Scholar
Mylona, P.V., Polidoros, A.N. and Scandalios, J.H. (2007) Antioxidant gene responses to ROS-generating xenobiotics in developing and germinated scutella of maize. Journal of Experimental Botany 58, 13011312.CrossRefGoogle ScholarPubMed
Nakabayashi, K., Okamoto, M., Koshiba, T., Kamiya, Y. and Nambara, E. (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant Journal 41, 697709.CrossRefGoogle Scholar
Nambara, E. and Marion-Poll, A. (2005) Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology 56, 165185.CrossRefGoogle ScholarPubMed
Nambara, E., Suzuki, M., Abrams, S., McCarty, D., Kamiya, Y. and McCourt, P. (2002) A screen for genes that function in abscisic acid signaling in Arabidopsis thaliana. Genetics 161, 12471255.Google ScholarPubMed
Nambara, E., Okamoto, M., Tatematsu, K., Yano, R., Seo, M. and Kamiya, Y. (2010) Abscisic acid and the control of seed dormancy and germination. Seed Science Research 20, 5567.CrossRefGoogle Scholar
Nonogaki, H., Bassel, G.W. and Bewley, J.D. (2010) Germination – still a mystery. Plant Science 179, 574581.CrossRefGoogle Scholar
Okamoto, M., Kuwahara, A., Seo, M., Kushiro, T., Asami, T., Hirai, N., Kamiya, Y., Koshiba, T. and Nambara, E. (2006) CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiology 141, 97107.CrossRefGoogle ScholarPubMed
Okamoto, M., Tatematsu, K., Matsiu, A., Morosawa, T., Ishida, J., Tanaka, M., Endo, T.A., Mochizuki, Y., Toyoda, T., Kamiya, Y., Shinozaki, K., Nambara, E. and Seki, M. (2010) Genome-wide analysis of endogenous ABA-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays. Plant Journal 62, 3951.CrossRefGoogle ScholarPubMed
Oracz, K., El-Maarouf-Bouteau, H., Farrant, J.M., Cooper, K., Belghazi, M., Job, C., Job, D., Corbineau, F. and Bailly, C. (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant Journal 50, 452465.CrossRefGoogle ScholarPubMed
Oracz, K., El-Maarouf-Bouteau, H., Bogatek, R., Corbineau, F. and Bailly, C. (2008) Release of sunflower seed dormancy by cyanide: crosstalk with ethylene signalling pathway. Journal of Experimental Botany 59, 22412251.CrossRefGoogle Scholar
Oracz, K., El-Maarouf-Bouteau, H., Kranner, I., Bogatek, R., Corbineau, F. and Bailly, C. (2009) The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiology 150, 494505.CrossRefGoogle ScholarPubMed
Penfield, S. (2008) Temperature perception and signal transduction in plants. New Phytologist 179, 615628.CrossRefGoogle ScholarPubMed
Penfield, S. and Hall, A. (2009) A role for multiple circadian clock genes in the response to signals that break seed dormancy in Arabidopsis. Plant Cell 21, 17221732.CrossRefGoogle ScholarPubMed
Preston, J., Tatematsu, K., Kanno, Y., Hobo, T., Kimura, M., Jikumaru, Y., Yano, R., Kamiya, Y. and Nambara, E. (2009) Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: a comparative study on dormant and non-dormant accessions. Plant Cell Physiology 50, 17861800.CrossRefGoogle ScholarPubMed
Probert, R.J. (2000) The role of temperature in the regulation of seed dormancy and germination. pp. 261292 in Fenner, M. (Ed.) Seeds: the ecology of regeneration in plant communities. London, CAB International.CrossRefGoogle Scholar
Pukacka, S. and Ratajczak, E. (2005) Production and scavenging of reactive oxygen species in Fagus sylvatica seeds during storage at varied temperature and humidity. Journal of Plant Physiology 162, 873885.CrossRefGoogle Scholar
Pulido, P., Dominguez, F. and Cejudo, F.J. (2009) A hydrogen peroxide detoxification system in the nucleus of wheat seed cells: protection or signaling role? Plant Signaling and Behavior 4, 2325.CrossRefGoogle ScholarPubMed
Rodríguez-Gacio, M.C., Matilla-Vázquez, M.A. and Matilla, A.J. (2009) Seed dormancy and ABA signaling: the breakthrough goes on. Plant Signaling and Behavior 4, 10351048.CrossRefGoogle Scholar
Sagi, M. and Fluhr, R. (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiology 141, 336340.CrossRefGoogle ScholarPubMed
Seo, M., Nambara, E., Choi, G. and Yamaguchi, S. (2009) Interaction of light and hormone signals in germinating seeds. Plant Molecular Biology 69, 463472.CrossRefGoogle Scholar
Sorefan, K., Girin, T., Liljegren, S.J., Ljung, K., Robles, P., Galván-Ampudia, C.S., Offrinaga, R., Friml, J., Yanofsky, M.F. and Østergard, L. (2009) A regulated auxin minimum is required for seed dispersal in Arabidopsis. Nature 459, 583587.CrossRefGoogle ScholarPubMed
Steadman, K.J., Bignell, G.P. and Ellery, A.J. (2003a) Field assessment of thermal after-ripening time for dormancy release prediction in Lolium rigidum seeds. Weed Research 43, 458465.CrossRefGoogle Scholar
Steadman, K.J., Crawford, A.D. and Gallagher, R.S. (2003b) Dormancy release in Lolium rigidum seeds is a function of thermal after-ripening time and seed water content. Functional Plant Biology 30, 345352.CrossRefGoogle Scholar
Stepanova, A.N. and Alonso, J.M. (2009) Ethylene signaling and response: where different regulatory modules meet. Current Opinion in Plant Biology 12, 548555.CrossRefGoogle ScholarPubMed
Swanson, S. and Gilroy, S. (2009) ROS in plant development. Physiologia Plantarum 138, 384392.CrossRefGoogle ScholarPubMed
Terskikh, V.V., Feurtado, J.A., Ren, C., Abrams, S.R. and Kermode, A.R. (2005) Water uptake and oil distribution during imbibition of seeds of western white pine (Pinus monticola Dougl. ex D. Don) monitored in vivo using magnetic resonance imaging. Planta 221, 1727.CrossRefGoogle Scholar
Vandenbussche, F. and Van Der Straeten, D. (2007) One for all and all for one: cross-talk of multiple signals controlling the plant phenotype. Journal of Plant Growth Regulation 26, 78187.CrossRefGoogle Scholar
Vaughan, D.A., Balázs, E. and Heslop-Harrison, J.S. (2007) From crop domestication to super-domestication. Annals of Botany 100, 893901.CrossRefGoogle ScholarPubMed
Wang, G. and Pichersky, E. (2007) Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis. Plant Journal 49, 10201029.CrossRefGoogle ScholarPubMed
Whitaker, C., Beckett, R.P., Minibayeva, F.V. and Kranner, I. (2010) Alleviation of dormancy by reactive oxygen species in Bidens pilosa L. seeds. South African Journal of Botany 76, 601605.CrossRefGoogle Scholar
Yamaguchi, S. (2008) Gibberellin metabolism and its regulation. Annual Review of Plant Biology 59, 225251.CrossRefGoogle ScholarPubMed
Yamaguchi, Y., Kamiya, Y. and Nambara, E. (2007) Regulation of ABA and GA levels during seed development and germination in Arabidopsis. pp. 224247 in Bradford, K.; Nonogaki, H. (Eds) Seed development, dormancy and germination. Oxford, Blackwell Publishing.CrossRefGoogle Scholar
Yano, R., Kanno, Y., Jikumaru, Y., Nakabayashi, K., Kamiya, Y. and Nambara, E. (2009) CHOTTO1, a putative double APETALA2 repeat transcription factor, is involved in abscisic acid-mediated repression of gibberellin biosynthesis during seed germination in Arabidopsis. Plant Physiology 151, 641654.CrossRefGoogle ScholarPubMed
Yong, Z., Kotur, Z. and Glass, A.D.M. (2010) Characterization of an intact two-component high-affinity nitrate transporter from Arabidopsis roots. Plant Journal 63, 739748.CrossRefGoogle ScholarPubMed
Zheng, X.Q., Hayashibe, E. and Ashihara, H. (2005) Changes in trigonelline (N-methylnicotinic acid) content and nicotinic acid metabolism during germination of mungbean (Phaseolus aureus) seeds. Journal of Experimental Botany 56, 16151623.CrossRefGoogle ScholarPubMed
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Progress in research on dry afterripening
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Progress in research on dry afterripening
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Progress in research on dry afterripening
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *