Skip to main content

Development of C-lignin with G/S-lignin and lipids in orchid seed coats – an unexpected diversity exposed by ATR-FT-IR spectroscopy

  • S.T. Barsberg (a1), Y.-I. Lee (a2) (a3) and H.N. Rasmussen (a1)

Members of the orchid family occupy many germination niches, in terrestrial, epiphytic and epilithic environments. How orchid seeds attach to their substrate and survive after dispersal is largely unknown. C-lignin is a recently discovered specialized lignin, found in seed coats of some plants, including orchid species, but its functional and biological significance is obscure. We studied seed coat ontogenesis in three species (Neuwiedia veratrifolia, Cypripedium formosanum and Phalaenopsis aphrodite) that represent basal and advanced branches in orchid phylogeny and divergent life forms. From each species, controlled pollination yielded several stages of seed development, from which seed coats (testa) were isolated and analysed by ATR-FT-IR spectroscopy. The use of the ATR set-up ensured that the chemical information originated only from the integral outer seed surface layers. The FT-IR bands of C-lignin are presented here for the first time, and distinguished from bands of G/S-lignin. In the seed coats, C-lignin developed after G/S-lignin in N. veratrifolia and C. formosanum, while only G/S-lignin developed in P. aphrodite. We discuss C-lignin properties and possible function in relation to seed coat properties. The species differed with respect to sequence and amounts of deposition, not only of lignins but also lipids, resulting in differences in mature seed coat compositions. Thus we revealed an unexpected and marked diversity among orchids with respect to seed surface chemistry, with possible implications for seed and germination ecology.

Corresponding author
Author for correspondence: S.T. Barsberg, Email:
Hide All
Barsberg, S (2010) Prediction of vibrational spectra of polysaccharides – simulated IR spectrum of cellulose based on Density Functional Theory (DFT). Journal of Physical Chemistry B 114, 1170311708.
Barsberg, S, Rasmussen, HN and Kodahl, N (2013) Composition of Cypripedium calceolus (Orchidaceae) seeds analyzed by attenuated total reflectance IR spectroscopy: in search of understanding longevity in the ground. American Journal of Botany 100, 20662073.
Barthlott, W, Große-Veldmann, B and Korotkova, N (2014) Orchid seed diversity: a scanning electron microscopy survey. Berlin: Botanic Garden and Botanical Museum Berlin-Dahlem. Englera 32.
Barthlott, W and Ziegler, B (1980) Über ausziehbare helicale Zellwandverdickungen als Haf-apparat der Samenschalen von Chiloschista lunifera (Orchidaceae). Berichten der Deutsche Botanische Gesellschaft 93, 391403.
Berstis, L, Elder, T, Crowley, M and Beckham, GT (2016) Radical nature of C-lignin. ACS Sustainable Chemistry and Engineering 4, 53275335.
Brundrett, MC, Kendrick, B and Peterson, CA (1991) Efficient lipid staining in plant material with Sudan red 7B or fluoral yellow 088 in polyethylene glycol-glycerol. Biotechnic and Histochemistry 66, 111116.
Cameron, KM (2011) Vanilla phylogeny and classification, pp. 243255 in Havkin-Frenkel, D and Belanger, FC (eds), Handbook of Vanilla Science and Technology. New York: Wiley-Blackwell.
Cameron, KM and Chase, MW (1998) Seed morphology of Vanillioid orchids (Vanillioideae: Orchidaceae). Lindleyana 13, 148169.
Carlson, MS (1940) Formation of the seed of Cypripedium parviflorum . Botanical Gazette 102, 295300.
Chase, MW, Cameron, KM, Barrett, RI and Freudenstein, JV (2003) DNA data and Orchidaceae systematics: a new phylogenetic classification, pp. 6989 in Dixon, KM, Kell, SP, Barrett, RI and Cribb, PJ (eds), Orchid Conservation. Kota Kinabalu, Natural History Publishers.
Chen, F, Tobimatsu, Y, Havkin-Frenkeld, D, Dixona, RA and Ralph, J (2012) A polymer of caffeyl alcohol in plant seeds. Proceedings of the National Academy of Sciences of the USA 109, 17721777.
Chen, F, Tobimatsu, Y, Jackson, L, Nakashima, J and Ralph, J (2013) Novel seed coat lignins in the Cactaceae: structure, distribution and implications for the evolution of lignin diversity. Plant Journal 73, 201211.
Clements, MA and Molvray, M (1999) Seed morphology, pp. 5966 in Pridgeon, AM, Cribb, PJ, Chase, MW and Rasmussen, FN (eds), Genera Orchidacearum vol. 1: General Introduction, Apostasioideae, Cypripedioideae. Oxford: Oxford University Press.
Constant, S, Wienk, HLJ and Frissen, AE (2016) New insights into the structure and composition of technical lignins: a comparative characterisation study. Green Chemistry 18, 26512665.
Dence, CW and Lin, SY (1992) Methods in Lignin Chemistry. Heidelberg: Springer Verlag.
Faix, O (1991) Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45 (S), 2127.
Fatihah, NHN, Fay, MF and Maxted, N (2011) Molecular phylogenetics of Cypripedium L. (Cypripedioideae: Orchidaceae) based on plastid and nuclear DNA sequences. Journal of Agrobiotechnology 2, 3551.
Fowler, SD and Greenspan, P (1985) Application of Nile red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections: comparison with oil red O. Journal of Histochemistry and Cytochemistry 33, 833836.
Guillén, MD and Cabo, N (1997) Infrared spectroscopy in the study of edible oils and fats. Journal of the Science of Food and Agriculture 75, 111.
Harrick, NJ (1967) Internal reflection spectroscopy. New York, Wiley.
Harvais, G (1980) Scientific notes on a Cypripedium reginae of northwestern Ontario, Canada. American Orchid Society Bulletin 49, 237244.
Hergert, H (1998) Developments in organosolv pulping – an overview, pp. 567 in Young, RA and Akhtar, M (eds), Environmentally Friendly Technologies for the Pulp and Paper Industry. New York: Wiley.
Hergert, HL (1971) Infrared spectra, pp. 267297 in Sarkanen, KV and Ludwig, CH (eds), Lignins – Occurrence, Formation, Structure and Reactions. New York: Wiley.
Kačuráková, M, Capek, P, Sasinková, V, Wellner, N and Ebringerová, A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydrate Polymers 43, 195203.
Kodahl, N, Johansen, BB and Rasmussen, FN (2015) The embryo sac of Vanilla imperialis (Orchidaceae) is six-nucleate, and double fertilization and formation of endosperm are not observed. Botanical Journal of the Linnaean Society 177, 202213.
Kurzweil, H (1993) Seed morphology in Southern African Orchidoideae (Orchidaceae). Plant Systematics and Evolution 185, 229247.
Larsen, KL and Barsberg, S (2010) Theoretical and Raman spectroscopic studies of phenolic lignin model monomers. Journal of Physical Chemistry B 114, 80098021.
Lee, YI (2003) Growth periodicity, changes of endogenous abscisic acid during embryogenesis, and in vitro propagation of Cypripedium formosanum Hay . PhD dissertation, National Taiwan University, Taipei, Taiwan.
Lee, YI, Lee, N, Yeung, EC and Chung, MC (2005) Embryo development of Cypripedium formosanum in relation to seed germination in vitro . Journal of the American Society for Horticultural Science 130, 747753.
Lee, YI, Yeung, EC, Lee, N and Chung, MC (2008) Embryology of Phalaenopsis amabilis var. formosa: embryo development. Botanical Studies 49, 139146.
Lee, YI, Chung, MC, Yeung, EC and Lee, N (2015) Dynamic distribution and the role of abscisic acid during seed development of a lady's slipper orchid, Cypripedium formosanum . Annals of Botany 116, 403411.
Li, JH, Liu, ZJ, Salazar, GA, Bernhardt, P, Perner, H, Yukawa, T, Jin, XH, Chung, SW and Luo, YB (2011) Molecular phylogeny of Cypripedium (Orchidaceae: Cypripedioideae) inferred from multiple nuclear and chloroplast regions. Molecular Phylogenetics and Evolution 61, 308320.
Nishimura, G and Yukawa, T (2010) Dark material accumulation and sclerotization during seed coat formation in Vanilla planifolia Jacks: Ex Andrews (Orchidaceae). Bulletin of the American Museum of Natural History Ser B 36, 3337.
Prutsch, J, Schardt, A and Schill, R (2000) Adaptations of an orchid seed to water uptake and –storage. Plant Systematics and Evolution 220, 6975.
Rasmussen, HN and Pedersen, (2011) Cypripedium calceolus germination in situ: Seed longevity, and dormancy breakage by long incubation and cold winters. European Journal of Environmental Science 1, 6970.
Rasmussen, HN and Rasmussen, FN (2014) Seedling mycorrhiza: a discussion of origin and evolution in Orchidaceae. Botanical Journal of the Linnean Society 175, 313327.
Rauh, W, Barthlott, W and Ehler, N (1975) Morphologie und Funktion der Testa staubförmiger Flugsamen. Botaniche Jahrbücher für Systematik 96, 353374.
Rodolphe, G, Severine, B, Michel, G and Pascale, B (2011) Biodiversity and evolution in the Vanilla genus, pp. 127 in Grillo, O and Venora, G (eds), The Dynamical Processes of Biodiversity – Case Studies of Evolution and Spatial Distribution (online).
Ruzin, SE (1999) Plant Microtechnique and Microscopy. New York: Oxford University Press.
Sletvold, N, Øien, D-I and Moen, A (2010) Long-term influence of moving on population dynamics in the rare orchid Dactylorhiza lapponica: the importance of recruitment and seed production. Biological Conservation 143, 747755.
Suetsugu, K, Kawakita, A and Makoto Kato, M (2015) Avian seed dispersal in a mycoheterotrophic orchid Cyrtosia septentrionalis . Nature Plants 1, 15052. doi: 10.1038/nplants.2015.52.
Thompson, DT, Edwards, TJ and Van Staden, J (2001) In vitro germination of several South African summer rainfall Disa (Orchidaceae) species – is seed structure a function of habitat and determinant of germinability? Systematics and Geography of Plants 71, 597606.
Tobimatsu, Y, Chen, F, Nakashima, J, Escamilla-Treviño, LL, Jackson, L, Dixon, R and Ralph, J (2013) Coexistence but independent biosynthesis of catechyl and guaiacyl/syringyl lignin polymers in seed coats. Plant Cell 25, 25872600.
Tsutsumi, C, Yukawa, T, Lee, NS, Lee, CS and Kato, M (2007) Phylogeny and comparative seed morphology of epiphytic and terrestrial species of Liparis (Orchidaceae). Japanese Journal of Plant Research 120, 405412.
Vázquez, G, Antorrena, G, González, J and Freire, S (1997) FTIR, 1H and 13C NMR characterization of Acetosolv-solubilized pine and eucalyptus lignins. Holzforschung 51, 158166.
Verma, J, Kranti Thakur, K, Sembi, JK and Vij, SP (2012) Study of seed morphometry or seven threatened Himalayan orchids exhibiting varied life modes. Acta Botanica Gallica 159, 443449.
Yang, CK and Lee, YI (2014) The seed development of a mycoheterotrophic orchid, Cyrtosia javanica Blume. Botanical Studies 55, 44.
Yeung, EC, Zee, SY and Ye, XL (1996) Embryology of Cymbidium sinense: embryo development. Annals of Botany 78, 105110.
Zeng, S, Zhang, Y, Teixeira da Silva, JA, Wu, KI, Zhang, J and Duan, J (2014) Seed biology and in vitro seed germination of Cypripedium . Critical reviews in biotechnology 34, 358371.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Seed Science Research
  • ISSN: 0960-2585
  • EISSN: 1475-2735
  • URL: /core/journals/seed-science-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Barsberg et al. supplementary material
Barsberg et al. supplementary material 1

 Word (122 KB)
122 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed