Skip to main content Accessibility help

The effect of water stress on the temperature range for germination of Orobanche aegyptiaca seeds

  • Ermias Kebreab (a1) and Alistair J. Murdoch (a1)


Non-dormant seeds of Orobanche aegyptiaca were incubated at water potentials of 0 to –1.33 MPa and at constant temperatures from 5 to 29°C. Effects of water potential and temperature on final germination were modelled. In general, germination increased with increased temperature from 5 to 20°C and decreased above 26°C. Maximum germination occurred at 20–26°C and 0 MPa. Germination was reduced as the water potential decreased. Water potential also affected the temperature range over which high germination was observed; at 0 MPa high germination occurred over 9° (17–26°C) compared with 3° at -1.25 MPa (17–20°C). The optimum germination temperature also tended to decrease with a decrease in water potential. Final germination could be accounted for by seed-to-seed variation in the population assuming that each seed had a minimum temperature for germination and a maximum temperature above which it would not germinate. Seed-to-seed variation in these characteristics was assumed to be normally distributed, and it was further assumed that the two characteristics were independent. Effects of water potential on these temperature requirements were quantified, and the resulting empirical model accounted for final germination with reasonable accuracy (R2= 0.96).


Corresponding author

*Correspondence Fax: +44 (0)118 931 8297 Email:


Hide All
Akanda, R.U., Mullahey, J.J. and Shilling, D.G. (1996) Environmental factors affecting germination of tropical soda apple (Solanum viarum). Weed Science 44, 570574.
Bierhuizen, J.F. and Wagenvoort, W.A. (1974) Some aspects of seed germination in vegetables 1. The determination and application of heat sums and minimum temperature for germination. Scientia Horticulturae 2, 213219.
Bradford, K.J. (1990) A water relations analysis of seed germination rates. Plant Physiology 94, 840849.
Bradford, K.J. (1995) Water relations in seed germination. pp. 351396in Kigel, J.; Galili, G. (Eds) Seed development and germination. New York, Marcel Dekker.
Bradford, K.J. (1997) The hydrotime concept in seed germination and dormancy. pp. 349360in Ellis, R.H.; Black, M.; Murdoch, A.J.; Hong, T.D. (Eds) Basic and applied aspects of seed biology. Dordrecht, Kluwer.
Christensen, M., Meyer, S.E. and Allen, P.S. (1996) A hydrothermal time model of seed after-ripening in Bromus tectorum L. Seed Science Research 6, 155163.
Dahal, P. and Bradford, K.J. (1994) Hydrothermal time analysis of tomato seed germination at suboptimal temperature and reduced water potential. Seed Science Research 4, 7180.
Dahal, P., Bradford, K.J. and Haigh, A.M. (1993) The concept of hydrothermal time in seed germination and priming. pp. 10091014in Côme, D.; Corbineau, F. (Eds) Basic and applied aspects of seed biology. Proceedings of the fourth international workshop on seeds. Paris, ASFIS.
Dahal, P., Kim, N.S. and Bradford, K.J. (1996) Respiration and germination rates of tomato seeds at suboptimal temperatures and reduced water potentials. Journal of Experimental Botany 47, 941947.
Ellis, R.H., Simon, G. and Covell, S. (1987) The influence of temperature on seed germination rate in grain legumes. III. A comparison of five faba bean genotypes at constant temperatures using a new screening method. Journal of Experimental Botany 38, 10331043.
Emmerich, W.E. and Hardegree, S.P. (1990) Polyethylene glycol solution contact effects on seed germination. Agronomy Journal 82, 11031107.
Falleri, E. (1994) Effect of water stress on germination in six provenances of Pinus pinaster Ait. Seed Science and Technology 22, 591599.
Foy, C.L., Jacobsohn, R., Bohlinger, B. and Jacobsohn, M. (1991) Seasonal behaviour of broomrape species as determined by host range and environmental factors. pp. 454457in Ransom, J.K.; Musselman, L.J.; Worsham, A.O.; Parker, C. (Eds) Proceedings of the fifth international symposium in parasitic weeds. Nairobi, CIMMYT.
Gan, Y.T., Stobbe, E.H. and Njue, C. (1996) Evaluation of selected non-linear regression models in quantifying seedling emergence rate of spring wheat. Crop Science 36, 165168.
Garcia-Huidobro, J., Monteith, J.L. and Squire, G.R. (1982) Time, temperature and germination of pearl millet (Pennisetum typhoides S. & H.) I. Constant temperature. Journal of Experimental Botany 33, 288296.
Genstat 5 Committee (1994) Genstat 5 Release 3 Reference Manual. Oxford, Clarendon Press.
Grundy, A.C. (1997) The influence of temperature and water potential on the germination of seven different drystored seed lots of Stellaria media. Weed Research 37, 257266.
Gummerson, R.J. (1986) The effect of constant temperatures and osmotic potentials on the germination of sugar beet. Journal of Experimental Botany 37, 729741.
Joel, D.M., Back, A., Kleifeld, Y. and Gepstein, S. (1991) Seed conditioning and its role in Orobanche seed germination: Inhibition by paclobutrazol. pp. 147156in Wegman, K.; Musselman, L.J. (Eds) Progress in Orobanche research. Proceedings of the international workshop on Orobanche research. Tübingen, Eberhard-Karls-Universität.
Kebreab, E. and Murdoch, A.J. (1999a) A quantitative model for loss of primary dormancy and induction of secondary dormancy in imbibed seeds of Orobanche spp. Journal of Experimental Botany 50, 211219.
Kebreab, E. and Murdoch, A.J. (1999b) Modelling the effects of water stress and temperature on germination rate of Orobanche aegyptiaca seeds. Journal of Experimental Botany 50, 655664.
Kebreab, E. and Murdoch, A.J. (1999c) A model of the effects of a wide range of constant and alternating temperatures on seed germination of four Orobanche species. Annals of Botany 84, 549557.
King, C.A. and Oliver, L.R. (1994) A model for predicting large crabgrass (Digitaria sanguinalis) emergence as influenced by temperature and water potential. Weed Science 42, 561567.
Linke, K.H. (1987) Untersuchungen über keimung und jugendentwicklung von Striga und Orobanche. PLITS 5, 195. Hohenheim, Germany, Universität Hohenheim.
Michel, B.E. (1983) Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiology 72, 6670.
Michel, B.E. and Kaufmann, M.R. (1973) The osmotic potential of polyethylene glycol 6000. Plant Physiology 51, 914916.
Murdoch, A.J., Roberts, E.H. and Goedert, C.O. (1989) A model for germination responses to alternating temperatures. Annals of Botany 63, 97111.
Van Hezewijk, M.J., Verkleij, J.A.C. and Pieterse, A.H. (1991) Temperature dependence of germination in Orobanche crenata. pp. 125133in Wegman, K.; Musselman, L.J. (Eds) Progress in Orobanche research. Proceedings of the international workshop on Orobanche research. Tübingen, Eberhard-Karls-Universität.
Weldeghiorghis, E.K. and Murdoch, A.J. (1996) Germination of Orobanche crenata seeds at a wide range of alternating and constant temperatures. pp. 425431in Moreno, M.T.; Cubero, J.I.; Berner, D.; Joel, D.; Musselman, L.J.; Parker, C. (Eds) Advances in parasitic plant research. Proceedings of the sixth international parasitic weed symposium. Cordoba, Dirección General De Investigación Agraria De Andalucia.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Seed Science Research
  • ISSN: 0960-2585
  • EISSN: 1475-2735
  • URL: /core/journals/seed-science-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed