Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-29T16:51:49.551Z Has data issue: false hasContentIssue false

Lightness Compression and Hue Changes

Published online by Cambridge University Press:  10 April 2014

Julio Lillo*
Affiliation:
Universidad Complutense de Madrid
Humberto Moreira
Affiliation:
Universidad Complutense de Madrid
*
Correspondence should be addressed to Dr. Julio Lillo Jover. Departamento de Psicología Diferencial y del Trabajo. Facultad de Psicología. Universidad Complutense de Madrid. Campus de Somosaguas. 28223. Madrid (Spain). Tel: +34 91 3943198. Fax + 34 913942820. Email: julillo@psi.ucm.es

Abstract

Two experiments were performed to relate the Bezold-Brücke (B-B) and lightness compression effects. The first used a calibrated screen to present an achromatic luminance staircase. In addition, it reproduced, the methodology and the essential aspects the lightness compression effect discovered by Cataliotti and Gilchrist (1995). That is, observers perceived a truncated grey scale (from white to medium grey) when the staircase was the only stimulation in the near background (Gelb condition), but not when presented on a Mondrian background, because of the high articulation level provided by this background. Experiment 1 design also included two other backgrounds that produced a partial compression effect. In Experiment 2, two chromatic staircases were used. Employing a naming task, changes in hue perception were only observed for the susceptible staircase. The observed changes were of two types. First, for the full staircase presentations, a Gelb background produced maximum lightness compression (more similarity in the lightness of the staircase stimuli) and, also, a minimum B-B effect (fewer differences in hue). Second, only for the Gelb condition, there were changes in the hue of the lowest luminance staircase stimuli depending on the staircase extension. Results are discussed in the framework of the anchoring theory of lightness perception.

Se realizaron dos experimentos para relacionar el efecto Bezold-Brücke y el de compresión de la claridad. En el primero se utilizó un monitor calibrado para presentar una escalera acromática de luminancias. Aparte de ello, el experimento reprodujo la metodología y los aspectos esenciales del efecto de compresión de la claridad descubierto por Cataliotti y Gilchrist (1995). Esto es, los observadores percibieron una escala de grises truncada (del blanco al gris medio) cuando la escalera fue la única estimulación presentada en el entorno próximo (condición Gelb), pero no cuando se presentó sobre un Mondrian, debido al alto nivel de articulación proporcionado por este fondo. El diseño del primer experimento también incluyó otros dos fondos que produjeron un efecto de compresión parcial. En el segundo experimento se utilizaron dos escaleras cromáticas. Una tarea de denominación permitió apreciar cambios en la percepción del matiz sólo en la escalera susceptible. Los efectos observados fueron de dos tipos. Primero, cuando se presentó la escalera completa, se observó que el fondo Gelb produjo una máxima compresión de la claridad (máxima similitud entre los estímulos de la escalera) y, también, un grado mínimo de efectos B-B (menos diferencias en matiz). Segundo, sólo para la condición Gelb hubo cambios en el matiz del estímulo de menor luminancia de la escalera, dependiendo de la extensión de la escalera. Los resultados se comentan en el marco de referencia proporcionado por la teoría del anclaje de la percepción de la claridad.

Type
Monographic Section: Spatial Vision and Visual Space
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelson, E.H. (1993). Perceptual organization and the judgement of brightness. Science, 262, 20422044.CrossRefGoogle ScholarPubMed
Boynton, R.M., & Gordon, J. (1965). Bezold-Brücke shift measured by color-naming technique. Journal of the Optical Society of America, 55, 7886.CrossRefGoogle Scholar
Boynton, R.M., & Olson, C.R. (1987). Locating basic colors in the OSA space. Colour Research and Application, 12, 94105.CrossRefGoogle Scholar
Boynton, R.M., & Olson, C.X. (1990). Salience of chromatic basic color terms confirmed by three measures. Vision Research, 30, 13111317.CrossRefGoogle ScholarPubMed
Cataliotti, J., & Gilchrist, A.L. (1995). Local and global processes in surface lightness perception. Perception & Psychophysics, 57, 125135.CrossRefGoogle ScholarPubMed
De Valois, R.L., & De Valois, K.K. (1988). Spatial vision. Oxford: Oxford University Press.Google Scholar
Fletcher, R.J. (1980). The City University Color Vision Test (2nd ed.). London: Keeler.Google Scholar
Gelb, A. (1929/1938). Die “Farbenkonstanz” der Sehdinge. In von Bethe, W.A., von Bergmann, G., Embden, G., & Ellinger, A (Eds.), Handbuch der normalen und pathologischen Physiologie (pp. 594678). Band 12, 1. Hälfte Receptionsorgane II. Berlin: Springer. [Selection translated in W.D. Ellis (Ed.), A source book of Gestalt psychology (pp. 196–209). New York: Harcourt Brace; London: Paul, Trench, Trubner].CrossRefGoogle Scholar
Gilchrist, A.L., & Annan, V. JR., (2002). Articulation effects in lightness: Historical backgrounds and theoretical implications. Perception, 4, 141150.CrossRefGoogle Scholar
Gilchrist, A.L., & Cataliotti, J. (1994). Anchoring of surface lightness values with multiple illumination levels. Investigative Opthalmology and Visual Science, 35, S2165.Google Scholar
Gilchrist, A., Kossyfidis, C., Bonato, F., Agostini, T., Cataliotti, J., Li, X., Spehar, B., Annan, V., & Economou, E. (1999). An anchoring theory of lightness perception. Psychological Review, 106, 795834.CrossRefGoogle ScholarPubMed
Haupt, I.A. (1922). The selectiveness of the eye's response to wavelength and its change with change of intensity. Journal of Experimental Psychology, 5, 347379.CrossRefGoogle Scholar
Hunt, R.W.G. (1991). Measuring Colour (2nd Ed.). New York: Wiley.Google Scholar
Kayser, P.K., & Boynton, R.M. (1996). Human Color Vision (2nd ed.). Washington: Optical Society of America.Google Scholar
Lillo, J., Aguado, L., Moreira, H., & Davies, I.R.L. (2004). Lightness and hue perception: The Bezold-Brücke effect and colour basic categories. Psicológica, 25, 2344.Google Scholar
Lillo, J., Moreira, H., & Gómez, N. (2002). Reflectance and energetic imbalance: Colourimetric evaluation of the NCS Colour Atlas. Psicológica, 23, 209231.Google Scholar
Lillo, J., Moreira, H., & Vitini, I. (in press). Locating Spanish basic colors in CIE L*U*V* space: Identification, lightness segregation and correspondence with English equivalents. Psicológica.Google Scholar
Nagy, A.L. (1980). Short-flash Bezold-Brücke hue shifts. Vision Research, 20, 361368.CrossRefGoogle ScholarPubMed
Paramei, G.V., Bimler, D.L., & Izmailov, C.A. (2005). “Paint it black”: Hue and saturation shifts from spatially induced blackness. Perception, 34. 157.Google Scholar
Pridmore, R.W. (1999a). Bezold-Brücke hue-shift as functions of luminance level, luminance ratio, interstimulus interval and adapting white for aperture and object colors. Vision Research, 39, 38733891.CrossRefGoogle ScholarPubMed
Pridmore, R.W. (1999b). Unique and binary hues as functions of luminance and illuminant color temperature, and relations with invariant hues. Vision Research, 39, 38923908.CrossRefGoogle ScholarPubMed
Sanders, M.S., & McCormick, E.J. (1993). Human factors in engineering and design (7th ed.). New York: McGraw-Hill.Google Scholar
SCI. (1997). NCS Index Edition 2. Stockholm: Scandinavian Color Institute.Google Scholar
Sturges, J, & Whitfield, A. (1997). Salient features of Munsell colour space as a function of monolexemic naming and response latencies. Vision Research, 37, 307313.CrossRefGoogle ScholarPubMed
Takahashi, S., & Ejima, Y. (1983). Functional relationship between chromatic induction and luminance of inducing stimulus. Journal of the Optical Society of America, 73, 198202.CrossRefGoogle ScholarPubMed
Uchikawa, U., Uchicawa, K., & Boynton, R.M. (1989). Influence of achromatic surrounds on categorical perception of surface colors. Vision Research, 29, 881890.CrossRefGoogle ScholarPubMed
Walraven, R.L. (1961). On the Bezold-Brücke phenomenon. Journal of the Optical Society of America, 51, 11131116.CrossRefGoogle ScholarPubMed
White, M. (1981). The effect of the nature of the surround on the perceived lightness of grey bars within square-wave test gratings. Perception, 10, 215230.CrossRefGoogle ScholarPubMed
Wyszecki, G., & Stiles, W.S. (1982). Color science: Concepts and methods. Quantitative data and formulae (2nd ed.). New York: Wiley.Google Scholar