Skip to main content Accessibility help

Analysis of Pseudohomophone Orthographic Errors through Functional Magnetic Resonance Imaging (fMRI)

  • Joan Guardia-Olmos (a1), Daniel Zarabozo-Hurtado (a2), Maribe Peró-Cebollero (a1), Esteban Gudayol-Farré (a3), Fabiola R. Gómez-Velázquez (a2) and Andrés González-Garrido (a2)...


The study of orthographic errors in a transparent language such as Spanish is an important topic in relation to writing acquisition because in Spanish it is common to write pseudohomophones as valid words. The main objective of the present study was to explore the possible differences in activation patterns in brain areas while processing pseudohomophone orthographic errors between participants with high (High Spelling Skills (HSS)) and low (Low Spelling Skills (LSS)) spelling orthographic abilities. We hypothesize that (a) the detection of orthographic errors will activate bilateral inferior frontal gyri, and that (b) this effect will be greater in the HSS group. Two groups of 12 Mexican participants, each matched by age, were formed based on their results in a group of spelling-related ad hoc tests: HSS and LSS groups. During the fMRI session, two experimental tasks were applied involving correct and pseudohomophone substitution of Spanish words. First, a spelling recognition task and second a letter searching task. The LSS group showed, as expected, a lower number of correct responses (F(1, 21) = 52.72, p <.001, η2 = .715) and higher reaction times compared to the HSS group for the spelling task (F(1, 21) = 60.03, p <.001, η2 = .741). However, this pattern was reversed when the participants were asked to decide on the presence of a vowel in the words, regardless of spelling. The fMRI data showed an engagement of the right inferior frontal gyrus in HSS group during the spelling task. However, temporal, frontal, and subcortical brain regions of the LSS group were activated during the same task.


Corresponding author

*Correspondence concerning this article should be addressed to Joan Guardia-Olmos. Universitat de Barcelona. Psicología. Barcelona (Spain). E-mail:


Hide All
How to cite this article:

Guardia-Olmos, J., Zarabozo-Hurtado, D., Peró-Cebollero, M., Gudayol-Farré, E., Gómez-Vázquez, F. R., & González-Garrido, A. (2017). Analysis of pseudohomophone orthographic errors through functional magnetic resonance imaging (fMRI). The Spanish Journal of Psychology, 20. e74. Doi:10.1017/sjp.2017.72



Hide All
Binder, J. R., Medler, D. A., Westbury, C. F., Liebenthal, E., & Buchanan, L. (2006). Tuning of the human left fusiform gyrus to sublexical orthographic structure. NeuroImage, 33, 739748.
Booth, J. R., Cho, S., Burman, D., & Bitan, T. (2007). Neural correlates of mapping from phonology to orthography in children performing an auditory spelling task. Developmental Science, 10, 441451.
Bolger, D. J., Hornickel, J., Cone, N. E., Burman, D. D., & Booth, J. R. (2008). Neural correlates of orthographic and phonological consistency effects in children. Human brain mapping, 29, 14161429.
Brunswick, N., McCrory, E., Price, C. J., Frith, C. D., & Frith, U. (1999). Explicit and implicit processing of words and pseudowords by adult developmental dyslexics: A search for Wernicke’s Wortschatz? Brain, 122, 19011917.
Castles, A., & Nation, K. (2006). How does orthographic learning happen? In Andrews, S. (Ed.), From ink marks to ideas. Current issues in lexical processing (pp. 151179). New York, NY: Psychology Press.
Cohen, L., Lehéricy, S., Chochon, F., Lemer, C., Rivaud, S., & Dehaene, S. (2002). Language–specific tuning of visual cortex? Functional properties of the visual word form area. Brain, 125, 10541069.
Cone, N. E., Burman, D., Bitan, T., Bolger, D. J., & Booth, J. R. (2008). Developmental changes in brain regions involved in phonological and orthographic processing during spoken language processing. NeuroImage, 41, 623635.
Eckert, M., Leonard, C. M., Richards, T. L., Aylward, E. H., Thomson, J., & Berninger, V. W. (2003). Anatomical correlates of dyslexia: Frontal and cerebellar findings. Brain, 126, 482494.
Edwards, J. D., Pexman, P. M., Goodyear, G. D., & Chambers, C. G. (2005). An fMRI investigation of strategies for word recognition. Cognitive Brain Research, 24, 648662.
Ehri, L. C. (1995). Phases of development in learning to read words by sight. Journal of Research in Reading, 18, 116125. https:/
Farràs, L., Guàrdia, J., & Peró, M. (2015). Efecto del tamaño kernel en el suavizado de señal BOLD en paradigmas funcionales (RMf) [Effect of kernel size for BOLD signal smoothing in functional paradigms (fMRI)]. Escritos de Psicología, 8, 2129.
Friston, K. (2012). Ten ironic rules for non–statistical reviewers. NeuroImage, 61, 13001310.
Frost, R., Katz, L., & Bentin, S. (1987). Strategies for visual word recognition and orthographical depth: a multilingual comparison. Journal of Experimental Psychology: Human Perception and Performance, 13, 104115.
Glezer, L. S., Jiang, X., & Riesenhuber, M. (2009). Evidence for highly selective neuronal tuning to whole words in the “visual word form area”. Neuron, 62, 199204.
Gómez-Velázquez, F. R., González-Garrido, A. A., Guàrdia-Olmos, J., Peró-Cebollero, M., Zarabozo-Hurtado, D., & Zarabozo, D. (2014). Evaluación del conocimiento ortográfico en adultos jóvenes y su relación con la lectura [Orthographic knowledge evaluation in young adults and its relationship with reading]. Revista Neuropsicología, Neuropsiquiatría y Neurociencias, 14, 4067.
González-Garrido, A. A., Gómez-Velázquez, F. R., & Rodríguez-Santillán, E. (2014). The orthographic recognition in late adolescents. An assessment through event-related brain potentials. Clinical EEG Neuroscience, 45, 113121.
Kriegeskorte, N., Simmons, W. K., Bellgowan, P., & Baker, C. I. (2009). Circular analysis in systems neuroscience – the dangers of doubledipping. NatureNeuroscience, 12, 535540.
Kronbichler, M., Klackl, J., Richlan, F., Schurz, M., Staffen, W., Ladurner, G., & Wimmer, H. (2009). On the functional neuroanatomy of visual word processing: Effects of case and letter deviance. Journal of Cognitive Neuroscience, 21, 222229.
Logothetis, N. K. (2002). The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philosophical Transactions of the Royal Society of London B. 357, 10031037.
Newmann, R. L., & Joanisse, M. F. (2001). Modulation of brain regions involved in word recognition by homophonous stimuli: An fMRI study. Brain Research, 1367, 250264.
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97113.
Paulesu, E., Brunswick, N., & Paganelli, F. (2010). Cross-cultural differences in unimpaired and dyslexic reading: Behavioral and functional anatomical observations in readers of regular and irregular orthographies. In Brunswick, N., McDougall, S., & de Mornay-Davies, P. (Eds.), Reading and dyslexia in different orthographies (pp. 249272) New York, NY: Psychology Press.
Peng, D. L., Ding, G. S., Perry, C., Xu, D., Jin, Z., Luo, Q., … Deng, Y. (2004). fMRI evidence for the automatic phonological activation of briefly presented words. Cognitive Brain Research, 20, 156164.
Perfetti, C. A. (1992). The representation problem in reading acquisition. In Gough, P., Ehri L., L., & Treiman, R. (Eds.), Reading acquisition (pp. 145174). Hillsdale, NJ: Lawrence Erlbaum Associates Inc.
Price, C. J., & Devlin, J. T. (2003).The myth of the visual word form area. NeuroImage, 19,473481.–3
Poldrack, R. A., Wagner, A. D., Prull, M. W., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1999). Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. Neuroimage, 10, 1535.
Richards, T. L., Aylward, H., Berninger, V. W., Field, K. M., Grinme, A. C., Richard, A. L., & Nagy, W. (2006). Individual fMRI activation in orthographic mapping and morpheme mapping after orthographic or morphological spelling treatment in child dyslexics. Journal of Neurolinguistics, 19, 5686.
Richards, T. L., Berninger, V. W., & Fayol, M. (2009). fMRI activation differences between 11-year-old good and poor speller’s access in working memory to temporary and long-term orthographic representations. Journal of Neurolinguistics, 22, 327353.
Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-prime reference guide. Pittsburgh, PA: Psychology Software Tools.
Sebastián, N., Martí, M. A., Carreiras, M. F., & Cuetos, F. (2000). LEXESP. Léxico informatizado del español [LEXESP: Spanish computerized lexicon]. Barcelona, Spain: Edicions de la Universitat de Barcelona.
Vigneau, M., Beaucousin, V., Herve, P. Y., Duffau, H., Crivello, F., Houde, O., … Tzourio-Mazoyer, N. (2006). Meta-analyzing left hemisphere language areas: Phonology, semantics, and sentence processing. Neuroimage, 30, 14141432.
Wimmer, H., Schurz, M., Sturm, D., Richlan, F., Klackl, J., Kronbichler, M., & Ladurner, G. (2010). A dual-route perspective on poor reading in a regular orthography: An fMRI study. Cortex, 46, 12841298.
Zhan, J., Yu, H., & Zhou, X. (2013). fMRI evidence for the interaction between orthography and phonology in reading Chinese compound words. Frontiers in human neuroscience, 7, 753.
Ziegler, J. C., & Goswami, U. (2006). Becoming literate in different languages: similar problems, different solutions. Developmental Science, 9, 429436.


Analysis of Pseudohomophone Orthographic Errors through Functional Magnetic Resonance Imaging (fMRI)

  • Joan Guardia-Olmos (a1), Daniel Zarabozo-Hurtado (a2), Maribe Peró-Cebollero (a1), Esteban Gudayol-Farré (a3), Fabiola R. Gómez-Velázquez (a2) and Andrés González-Garrido (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.