Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-04T22:41:49.226Z Has data issue: false hasContentIssue false

Principal Component Analysis of Working Memory Variables during Child and Adolescent Development

Published online by Cambridge University Press:  03 October 2016

Catarina I. Barriga-Paulino
Affiliation:
Universidad de Sevilla (Spain)
Elena I. Rodríguez-Martínez
Affiliation:
Universidad de Sevilla (Spain)
María Ángeles Rojas-Benjumea
Affiliation:
Universidad de Sevilla (Spain)
Carlos M. Gómez*
Affiliation:
Universidad de Sevilla (Spain)
*
*Correspondence concerning this article should be addressed to Carlos M. Gómez. Departamento de Psicología Experimental. Universidad de Sevilla. C/ Camilo Jose Cela, s/n. 41018. Universidad de Sevilla. Sevilla (Spain). Phone: 34–954557800. E-mail: cgomez@us.es

Abstract

Correlation and Principal Component Analysis (PCA) of behavioral measures from two experimental tasks (Delayed Match-to-Sample and Oddball), and standard scores from a neuropsychological test battery (Working Memory Test Battery for Children) was performed on data from participants between 6–18 years old. The correlation analysis (p < .05) results showed a common maturational trend in working memory performance between these two types of tasks. Applying PCA (Eigenvalues > 1), the scores of the first extracted component were significantly correlated (p < .05) to most behavioral measures, suggesting some commonalities of the processes of age-related changes in the measured variables. The results suggest that this first component would be related to age but also to individual differences during the cognitive maturation process across childhood and adolescence stages. The fourth component would represent the speed-accuracy trade-off phenomenon as it presents loading components with different signs for reaction times and errors.

Type
Research Article
Copyright
Copyright © Universidad Complutense de Madrid and Colegio Oficial de Psicólogos de Madrid 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baddeley, A. (1992). Working memory. Science, 255, 556559. http://dx.doi.org/10.1126/science.1736359 CrossRefGoogle ScholarPubMed
Baddeley, A. (1996). The fractionation of working memory. Proceedings of the National Academy of Sciences, 93, 1346813472. http://dx.doi.org/10.1073/pnas.93.24.13468 CrossRefGoogle ScholarPubMed
Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417423. http://dx.doi.org/10.1016/S1364-6613(00)01538-2 CrossRefGoogle ScholarPubMed
Baddeley, A. D., & Hitch, G. J. (2000). Development of working memory: Should the Pascual-Leone and the Baddeley and Hitch Models Be Merged? Journal of Experimental Child Psychology, 77, 128137. http://dx.doi.org/10.1006/jecp.2000.2592 CrossRefGoogle ScholarPubMed
Barriga-Paulino, C. I., Flores, A. B., & Gómez, C. M. (2011). Developmental changes in the EEG rhythms of children and young adults analyzed by means of correlational, brain topography and principal component analysis. Journal of Psychophysiology, 25, 143158. http://dx.doi.org/10.1027/0269-8803/a000052 CrossRefGoogle Scholar
Bjorklund, D. F. (1997). The role of immaturity in human development. Psychological Bulletin, 122, 153169. http://dx.doi.org/10.1037/0033-2909.122.2.153 CrossRefGoogle ScholarPubMed
Conklin, H. M., Luciana, M., Hooper, C. J., & Yarger, R. S. (2007). Working memory performance in typically developing children and adolescents: Behavioral evidence of protracted frontal lobe development. Developmental Neuropsychology, 31(1), 103128. http://dx.doi.org/10.1207/s15326942dn3101_6 CrossRefGoogle ScholarPubMed
Cowan, N., Wood, N. L., Wood, P. K., Keller, T. A., Nugent, L. D., & Keller, C. V. (1998). Two separate verbal processing speeds contributing to verbal short-term memory span. Journal of Experimental Psychology, 127, 141160.CrossRefGoogle Scholar
Diamond, A. (2000). Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Development, 71(1), 4456. http://dx.doi.org/10.1111/1467-8624.00117 CrossRefGoogle ScholarPubMed
Donchin, E., & Coles, M. G. H. (1988). Is the P300 component a manifestation of context updating? The Behavioral and Brain Sciences, 11, 357374. http://dx.doi.org/10.1017/S0140525X00058027 CrossRefGoogle Scholar
Gathercole, S. E. (1998). The development of memory. The Journal of Child Psychology and Psychiatry, 39(1), 327. http://dx.doi.org/10.1111/1469-7610.00301 CrossRefGoogle ScholarPubMed
Gathercole, S. E., & Pickering, S. J. (2000b). Assessment of working memory in six-and seven-year-old children. Journal of Educational Psychology, 92, 377390.CrossRefGoogle Scholar
Gathercole, S. E., Pickering, S. J., Ambridge, B., & Wearing, H. (2004). The structure of working memory from 4 to 15 years of age. Developmental Psychology, 40, 177190. http://dx.doi.org/10.1037/0012-1649.40.2.177 CrossRefGoogle Scholar
Gorsuch, R. L. (1983). Factor analysis. New Jersey, NJ: Lawrence Erlbaum Associates.Google Scholar
Guttman, L. (1954). A new approach to factor analysis: The radex. In Lazarsfeld, P. F. (Ed.), Mathematical thinking in the social sciences (pp. 258348). New York, NY: Columbia University Press.Google Scholar
Hulme, C., Thomson, N., Muir, C., & Lawrence, A. (1984). Speech rate and the development of short-term memory span. Journal of Experimental Child Psychology, 38, 241253. http://dx.doi.org/10.1016/0022-0965(84)90124-3 CrossRefGoogle Scholar
Justicia, F. J. (1995). El desarrollo del vocabulario: Diccionario de frecuencias. [The development of the vocabulary: Frequency dictionary]. Granada, Spain: Universidad de Granada.Google Scholar
Keshavan, M. S., Diwadkar, V. A., DeBellis, M., Dick, E., Kotwal, R., Rosenberg, D. R., … Pettegrew, J. W. (2002). Development of the corpus callosum in childhood, adolescence and early adulthood. Life Sciences, 70, 19091922. http://dx.doi.org/10.1016/S0024-3205(02)01492-3 CrossRefGoogle ScholarPubMed
Logie, R. H., & Pearson, D. G. (1997). The inner ear and the inner scribe of visuo-spatial working memory: Evidence from developmental fractionation. European Journal of Cognitive Psychology, 9, 241257.CrossRefGoogle Scholar
Logie, R. H., Zucco, G. M., & Baddeley, A. D. (1990). Interference with visual short-term memory. Acta Psychologica, 75, 5574. http://dx.doi.org/10.1016/0001-6918(90)90066-O CrossRefGoogle ScholarPubMed
Luciana, M., Conklin, H. M., Hooper, C. J., & Yarger, R. S. (2005). The development of nonverbal working memory and executive control processes in adolescents. Child Development, 76, 697712. http://dx.doi.org/10.1111/j.1467-8624.2005.00872.x CrossRefGoogle ScholarPubMed
Nelson, C. A. (1995). The ontogeny of human memory: A cognitive neuroscience perspective. Developmental Psychology, 31, 723738. http://dx.doi.org/10.1037/0012-1649.31.5.723 CrossRefGoogle Scholar
Nelson, C. A. (2000). Neural plasticity and human development: The role of early experience in sculpting memory systems. Developmental Science, 3, 115136. http://dx.doi.org/10.1111/1467-7687.00104 CrossRefGoogle Scholar
Paule, M. G., Bushnell, P. J., Maurissen, J. P. J., Wenger, G. R., Buccafusco, J. J., Chelonis, J. J., & Elliott, R. (1998). The use of delayed matching-to-sample procedures in studies of short-term memory in animals and humans. Neurotoxicology and Teratology, 20, 493502.CrossRefGoogle ScholarPubMed
Perry, B., & Pollard, R. (1998). Homeostasis, stress, trauma, and adaptation: A neuro-developmental view of childhood trauma. Child and Adolescent Clinics of North America, 7, 3351.CrossRefGoogle Scholar
Pickering, S. J., & Gathercole, S. E. (2001). Working memory test battery for children. London, UK: Psychological Corporation.Google Scholar
Riggs, K. J., McTaggart, J., Simpson, A., & Freeman, R. P. J. (2006). Changes in the capacity of visual working memory in 5-to 10-year-olds. Journal of Experimental Child Psychology, 95, 1826. http://dx.doi.org/10.1016/j.jecp.2006.03.009 CrossRefGoogle Scholar
Rodriguez-Martinez, E. I., Barriga-Paulino, C. I., Zapata, M. I., Chinchilla, C., López-Jiménez, A. M., & Gómez, C. M. (2012). Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period. BMC Neuroscience, 13, 104. http://dx.doi.org/10.1186/1471-2202-13-104 CrossRefGoogle Scholar