Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T13:27:33.332Z Has data issue: false hasContentIssue false

Advances in radiatively driven wind models

Published online by Cambridge University Press:  26 May 2016

Joachim Puls
Affiliation:
Universitätssternwarte, Ludwich-Maximilians-Universität, Scheinerstraße 1, D-81679 München, BRD
Tamara Repolust
Affiliation:
Universitätssternwarte, Ludwich-Maximilians-Universität, Scheinerstraße 1, D-81679 München, BRD
Tadziu L. Hoffmann
Affiliation:
Universitätssternwarte, Ludwich-Maximilians-Universität, Scheinerstraße 1, D-81679 München, BRD
Alexander Jokuthy
Affiliation:
Universitätssternwarte, Ludwich-Maximilians-Universität, Scheinerstraße 1, D-81679 München, BRD
Roberto O.J. Venero
Affiliation:
Observatorio Astronómico, Paseo del Bosque, La Plata, Argentina

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report on a re-analysis of the Galactic O-type star sample presented by Puls et al. (1996) by means of non-LTE model atmospheres including line-blocking and line-blanketing. In particular, we concentrate on the question concerning the dependence of the wind-momentum luminosity relation (WLR) on luminosity class. Owing to the line-blanketing, the derived effective temperatures become significantly lower when compared to previous results, whereas the so-called ‘modified wind-momentum rates’ remain roughly at their former values. Therefore, we obtain a new WLR for O-type stars. By comparing these ‘observational’ results with new theoretical predictions and simulations, we conclude that the Hα forming region for objects with Hα in emission might be considerably clumped and thus a larger mass-loss rate than actually present is mimicked. We suggest that the previously found dependence of the WLR on luminosity class is an artefact.

Type
Part 1. Atmospheres of Massive Stars
Copyright
Copyright © Astronomical Society of the Pacific 2003 

References

Crowther, P.A., Hillier, D.J., Evans, C.J., et al. 2002, ApJ 579, 774.Google Scholar
Feldmeier, A., Puls, J., Pauldrach, A.W.A. 1997, A&A 322, 878.Google Scholar
Eversberg, T., Lepine, S., Moffat, A.F.J. 1998, ApJ 494, 799.Google Scholar
Herrero, A., Kudritzki, R.-P., Vialchez, J.M., et al. 1992, A&A 261, 209.Google Scholar
Herrero, A., Puls, J., Najarro, F. 2002, A&A 396, 949.Google Scholar
Hillier, D.J., Miller, D.L. 1998, ApJ 496, 407.Google Scholar
Hubeny, I., Lanz, T. 1995, ApJ 439, 875.Google Scholar
Kudritzki, R.-P., Puls, J. 2000, Ann. Review Astron. Astrophys. 38, 613.Google Scholar
Kudritzki, R.-P., Puls, J., Lennon, D.J., et al. 1999, A&A 350, 970.Google Scholar
Martins, F., Schaerer, D., Hillier, D.J. 2002, A&A 382, 999.Google Scholar
Owocki, S.P., Puls, J. 1999, ApJ 510, 355.CrossRefGoogle Scholar
Pauldrach, A.W.A., Hoffmann, T.L., Lennon, M. 2001, A&A 375, 161; Erratum 2002, A&A 395, 611.Google Scholar
Pauldrach, A.W.A., Hoffmann, T.L., Méndez, R.H. 2002, in: Kwok, S. & Dopita, M. (eds.), Planetary Nebulae: Their Evolution and their Role in the Univserse, Proc. IAU Symp. No. 209, in press.Google Scholar
Puls, J., Kudritzki, R.-P., Herrero, A., et al. 1996, A&A 305, 171.Google Scholar
Santolaya-Rey, A.E., Puls, J., Herrero, A. 1997, A&A 323, 488.Google Scholar
Vacca, W.D., Garmany, C.D., Shull, J.M. 1996, ApJ 460, 914.Google Scholar
Vink, J.S., de Koter, A., Lamers, H. 2000, A&A 362, 295.Google Scholar