Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-29T07:10:57.713Z Has data issue: false hasContentIssue false

Dust in Dense Clouds

Published online by Cambridge University Press:  23 September 2016

A. G. G. M. Tielens*
Affiliation:
Space Sciences Division, NASA Ames Research Center, CA 94035 Space Sciences Laboratory, UC Berkeley, CA 94720

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent observational and theoretical studies of dust in dense clouds are reviewed with an emphasis on the growth of dust grains through accretion and coagulation. IR reflection nebulae around protostellar objects are useful probes of grain sizes in dense clouds. For example, detailed studies of the IR reflection nebula surrounding OMC 2-IRS 1 show that the (scattering) grains are much larger (Ã 5000 å) than in the diffuse interstellar medium. Likewise, the presence of a weak shoulder at 2.95 μm on the 3.08 μm feature in BN indicates the importance of scattering by icy grains and implies a very similar increase in the grain size.

Theoretical studies of grain surface chemistry predict the possible presence of three distinctly different grain mantle components in dense clouds depending on the physical conditions in the gas phase. These are: 1) A hydrogenated mantle dominated by H2O and CH3OH; 2) An inert grain mantle dominated by CO and O2; and 3) An oxidized grain mantle dominated by CO2. Although the importance of H2O dominated grain mantles was known for 10 yrs, the presence of CH3OH was only recently confirmed. Furthermore, recent studies of the solid CO band have revealed the presence of at least two distinctly different interstellar grain mantle components along the line of sights towards most stars: One dominated by polar and one by non-polar molecules. Although specific identification of the molecules mixed in with the CO in these components is difficult, it is quite possible that the former component is dominated by H2O and the latter by CO itself, as suggested by theoretical models. Finally, the photochemical evolution of icy grain mantles is briefly reviewed and it is suggested that the resulting complex molecular mantles may evolve into amorphous carbon mantles in the diffuse ISM.

Grain-grain collisions can lead to large modifications of the interstellar grain size distribution. At high velocities (v ≳ 1 kms−1) shattering into many small fragments will be important, while at low velocities (v ≲ 10 ms−1) coagulation dominates. Both processes can play a role in dense molecular clouds. The sticking of grains at low velocities is discussed in some detail and it is concluded that coagulation in molecular clouds is only important if the colliding grains are covered by icy grain mantles.

Thus, a model for interstellar dust is proposed in which small (≲ 500 å) silicate and carbonaceous grains are “glued” together in large (Ã 3000å), open conglomerates by a polymerized, all enveloping grain mantle. This structure resembles that of certain interplanetary dust particles collected in the upper stratosphere.

Type
Section III: Dust in Dense Clouds
Copyright
Copyright © Kluwer 1989 

References

Allamandola, L. J., 1984 in Galactic and Extragalactic IR Spectroscopy, eds. Kessler, M. F. and Phillips, J. P., (Dordrecht: Reidel), p. 5.Google Scholar
Baas, F. et al. 1989, in preparation.Google Scholar
Bradley, J. P., and Brownlee, D. E. 1986, Science, 231, 1542.CrossRefGoogle Scholar
Bregman, J. D. 1989, in IAU Symposium 135, Interstellar Dust, eds. Allamandola, L. J. and Tielens, A. G. G. M., (Dordrecht: Kluwer), p. 109.CrossRefGoogle Scholar
Chokshi, A., Tielens, A. G. G. M., and Hollenbach, D., 1989, in preparation.Google Scholar
d'Hendecourt, L. B., 1984, , .Google Scholar
d'Hendecourt, L. B., Allamandola, L. J., and Greenberg, J. M. 1985, Astr. Ap., 152, 130.Google Scholar
d'Hendecourt, L. B., Allamandola, L. J., Baas, F., and Greenberg, J. M. 1982, Astr. Ap., 109, L12.Google Scholar
d'Hendecourt, L. B., Allamandola, L. J., Grim, R. J. A., and Greenberg, J. M. 1986, Astr. Ap., 158, 119.Google Scholar
Dalgarno, A., and Lepp, S. 1985, Ap. J. (Letters), 287, L47.Google Scholar
de Boer, K.S., Lenhart, H., van der Hucht, K.A., Kamperman, T.M., Kondo, Y., and Bruhweiler, F. C., 1986, Astr. Ap. 157, 119.Google Scholar
Draine, B. T. 1985, in Protostars and Planets II, eds. Black, D. and Mathews, M., (Tucson: Univ. Arizona Press).Google Scholar
Draine, B. T., and Lee, H. M. 1984, Ap. J., 285, 89.CrossRefGoogle Scholar
Edwards, S., and Snell, R. L. 1984, Ap. J., 281, 237.CrossRefGoogle Scholar
Jura, M., 1980, Ap. J., 235, 63.Google Scholar
Geballe, T. R. 1986, Astr. Ap., 162, 248.Google Scholar
Gehrz, R. D. 1989, in IAU Symposium 135, Interstellar Dust, eds. Allamandola, L. J. and Tielens, A. G. G. M., (Dordrecht: Kluwer), p. 445.Google Scholar
Greenberg, J. M. 1979, in Stars and Stellar Systems, ed. Westerlund, B., (Dordrecht: Reidel), p. 173.CrossRefGoogle Scholar
Grim, R. J. A. 1988, , .Google Scholar
Grim, R. J. A., and d'Hendecourt, L. B. 1986, Astr. Ap., 167, 161.Google Scholar
Grim, R. J. A., and Greenberg, J. M. 1987, Ap. J. (Letters), 321, L91.CrossRefGoogle Scholar
Hagen, W., and Tielens, A. G. G. M. 1981, J. Chem. Phys., 75, 4198.Google Scholar
Hagen, W., Tielens, A. G. G. M., and Greenberg, J. M. 1983, Astr. Ap., 117, 132.Google Scholar
Hollim, P., and Pritchard, J. 1980, in Vibrational Spectroscopy for Adsorbed Species, eds. Bell, A. T. and Hair, M. L., (New York: Acad. Press), p. 51.Google Scholar
Iijima, S. 1987, Japan J. Appl. Phys., 26, 365.Google Scholar
Jenkins, E. 1989, in IAU Symposium 135, Interstellar Dust, eds. Allamandola, L. J. and Tielens, A. G. G. M., (Dordrecht: Kluwer), p. 23.Google Scholar
Johnson, R. E., and Lanzerotti, L. J., 1986, Icarus, 66, 619.CrossRefGoogle Scholar
Kendall, K. 1980, Contemp. Phys., 21, 277.Google Scholar
Kerridge, J. F. 1989, in IAU Symposium 135, Interstellar Dust, eds. Allamandola, L. J. and Tielens, A. G. G. M., (Dordrecht: Kluwer), p. 383.Google Scholar
Knacke, R. F., and McCorkle, S. M. 1987, A. J., 94, 972.Google Scholar
Knacke, R. F., McCorkle, S. M., Puetter, R. C., Erickson, E. F., and Kratschmer, W. 1982, Ap. J., 260, 141.Google Scholar
Lacy, J. H. et al., 1984, Ap. J., 276, 533.CrossRefGoogle Scholar
Larson, H. P., Davis, D. S., Black, J. H., and Fink, U. 1985, Ap. J., 299, 873.Google Scholar
Léger, A., Jura, M., and Omont, A. 1985, Astr. Ap., 144, 147.Google Scholar
Margulis, M., and Lada, C. J. 1985, Ap. J., 299, 925.CrossRefGoogle Scholar
Mathis, J. S., Rumpl, W., and Nordsieck, K. H. 1977, Ap. J., 217, 425.Google Scholar
McKee, C. F. 1989, in IAU Symposium 135, Interstellar Dust, eds. Allamandola, L. J. and Tielens, A. G. G. M., (Dordrecht: Kluwer), p. 431.Google Scholar
Merrill, K. M., Russell, R. W., and Soifer, B. T. 1976, Ap. J., 207, 763.Google Scholar
Myers, P. C. 1987 in Interstellar Processes, eds. Hollenbach, D. and Thronson, H. A. Jr., (Dordrecht: Reidel), p. 71.Google Scholar
Newton, I. 1686, Principia, (London: Dover).Google Scholar
Nuth, J. A., and Moore, M. H. 1988, Ap. J. (Letters), 329, L113.Google Scholar
Pendleton, Y. 1987, , .Google Scholar
Pendleton, Y., Tielens, A. G. G. M., and Werner, M. W. 1989, in preparation.Google Scholar
Prasad, S. S., and Tarafdar, S. P. 1983, Ap. J., 267 603.CrossRefGoogle Scholar
Rossler, K., 1986, Rad. Eff., 99, 21.CrossRefGoogle Scholar
Rouan, D., and Léger, A. 1984, Astr. Ap., 132, L1.Google Scholar
Sandford, S. A. 1989, in IAU Symposium 135, Interstellar Dust, eds. Allamandola, L. J. and Tielens, A. G. G. M., (Dordrecht: Kluwer), p. 403.CrossRefGoogle Scholar
Sandford, S. A., Allamandola, L. J., Tielens, A. G. G. M., and Valero, G. J. 1988, Ap. J., 329, 498.Google Scholar
Scalo, J. M. 1977, Astr. Ap., 55, 253.Google Scholar
Schutte, W. 1988, , .Google Scholar
Serkowski, K., Mathewson, D. S., and Ford, V. L. 1975, Ap. J., 196, 261.Google Scholar
Shu, F., Lizano, S., and Adams, F. 1987, Ann. Rev. Astr. Ap. Google Scholar
Shull, J. M., and van Steenbergen, M. E. 1985, Ap. J., 294, 599.Google Scholar
Sternberg, A., Dalgarno, A., and Lepp, S. Ap. J., 320, 676.CrossRefGoogle Scholar
Tielens, A. G. G. M. 1983, Astr. Ap., 119, 177.Google Scholar
Tielens, A. G. G. M. 1988, in Carbon in the Galaxy: Studies from Earth and Space, ed. Tarter, J., NASA CP-, in press.Google Scholar
Tielens, A. G. G. M., and Allamandola, L. J. 1987a, in Physical Processes in Dense Clouds, eds. Morfill, G. E. and Scholer, M., (Dordrecht: Reidel), p. 333.Google Scholar
Tielens, A. G. G. M., and Allamandola, L. J. 1987b, in Interstellar Processes, eds. Hollenbach, D. and Thronson, H., (Dordrecht: Reidel), p. 397.CrossRefGoogle Scholar
Tielens, A. G. G. M., Allamandola, L. J., Bregman, J., Goebel, J., d'Hendecourt, L. B., and Witteborn, F. C 1984, Ap. J., 287, 697.Google Scholar
Tielens, A. G. G. M., and Hagen, W. 1982, Astr. Ap., 114, 245.Google Scholar
Tielens, A. G. G. M., Tokunaga, A., Geballe, T. R., and Baas, F. 1989, in preparation.Google Scholar
van de Bult, C. E. P. M. 1982, unpublished.Google Scholar
Volk, H. J., Jones, F. C., Morfill, G. E., and Roser, S. 1980, Astr. Ap., 85, 316.Google Scholar
Werner, M. W., Dinerstein, H. L., and Capps, R. W. Ap. J. (Letters), 265, L13.Google Scholar
Whittet, D. C. B. and van Breda, I. G., 1978, Astr. Ap., 66, 57.Google Scholar
Wilking, B. A., and Lada, C. J. 1983, Ap. J., 274, 698.CrossRefGoogle Scholar