Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T10:51:32.139Z Has data issue: false hasContentIssue false

The Fuse Survey of O VI in and near the Milky Way

Published online by Cambridge University Press:  26 May 2016

B. D. Savage
Affiliation:
Department of Astronomy, University of Wisconsin, Madison, WI, USA
B. P. Wakker
Affiliation:
Department of Astronomy, University of Wisconsin, Madison, WI, USA
K. R. Sembach
Affiliation:
Space Telescope Science Institute, Baltimore, MB, USA
P. Richter
Affiliation:
Institut fur Astrophysik und Extraterrestrische Forschung, Bonn, Germany
M. Meade
Affiliation:
Department of Astronomy, University of Wisconsin, Madison, WI, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We summarize the results of the Far-Ultraviolet Spectroscopic Explorer (FUSE) program to study O VI in the Milky Way halo. Spectra of 100 extragalactic objects and two distant halo stars are analyzed to obtain measures of O VI absorption along paths through the Milky Way thick disk/halo and beyond. Strong O VI absorption over the velocity range from −100 to 100 km s−1 reveals a widespread but highly irregular distribution of O VI, implying the existence of substantial amounts of hot gas with T~3×105 K in the Milky Way thick disk/halo. The overall distribution of O VI can be described by a plane-parallel patchy absorbing layer with an average O VI mid-plane density of no(O VI) = 1.7×10−8 cm−3, an exponential scale height of ~2.3 kpc, and a ~0.25 dex excess of O VI in the northern Galactic polar region. Approximately 60 percent of the sky is covered by high velocity O VI with |vLSR|>100 km s−1. This high velocity O VI traces a variety of phenomena in and near the Milky Way including outflowing material from the Milky Way, tidal interactions with the Magellanic Clouds, accretion of gas onto the Milky Way, and warm/hot gas interactions in a highly extended (>70 kpc) Galactic corona or with hot intergalactic gas in the Local Group.

Type
Part 2. Origin
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Ballet, J., Arnaud, M., & Rothenflug, R. 1986, A&A, 161, 12.Google Scholar
Begelman, M.C., & Fabian, A.C. 1990, MNRAS, 244, 26p.Google Scholar
Edgar, R.J., & Chevalier, R.A. 1986, ApJ, 310, L27.CrossRefGoogle Scholar
Jenkins, E.B. 1978a, ApJ, 219, 845.CrossRefGoogle Scholar
Jenkins, E.B. 1978b, ApJ, 220, 107.CrossRefGoogle Scholar
Jenkins, E.B., Bowen, D.V., & Sembach, K.R. 2001, in Proc. XVIIth IAP Colloquium: “Gaseous Matter in Galactic and Intergalactic Space”, eds. Ferlet, R., Lemoine, M., Desert, J.M., Raban, B. (Frontier Group), 99.Google Scholar
McKee, C. 1993, in “Back to the Galaxy”, eds. Holt, S.G. & Verter, F. (New York: AIP), 499.Google Scholar
Moos, H.W., et al. 2000, ApJ, 538, L1.CrossRefGoogle Scholar
Raymond, J.C. 1992, ApJ, 384, 502.CrossRefGoogle Scholar
Sahnow, D. et al. 2000, ApJ, 538, L7.CrossRefGoogle Scholar
Savage, B.D. 1995, in “The Physics of the Interstellar and Intergalactic Medium”, eds. Ferrara, A., McKee, C.F., Heiles, C., & Shapiro, P.R. (San Francisco: ASP Conf. Pub.) Vol.80, 233.Google Scholar
Savage, B.D., & Sembach, K.R. 1991, ApJ, 379, 245.CrossRefGoogle Scholar
Savage, B.D., et al., 2003, ApJS, 146, 125.CrossRefGoogle Scholar
Sembach, K.R., et al., 2003, ApJS, 146, 165.CrossRefGoogle Scholar
Shapiro, P.R., & Benjamin, R.A. 1991, PASP, 103, 923.CrossRefGoogle Scholar
Shapiro, P.R., & Field, G.B. 1976, ApJ, 205, 762.CrossRefGoogle Scholar
Slavin, J.D., & Cox, D.P. 1992, ApJ, 392, 131.CrossRefGoogle Scholar
Slavin, J.D., & Cox, D.P. 1993, ApJ, 417, 187.CrossRefGoogle Scholar
Slavin, J.D., Shull, J.M., & Begelman, M.C. 1993, ApJ, 407, 83.CrossRefGoogle Scholar
Spitzer, L. 1956, ApJ, 124, 20.CrossRefGoogle Scholar
Spitzer, L. 1990, ARA&A, 28, 71.Google Scholar
Wakker, B.P., et al. 2003, ApJS, 146, 1.CrossRefGoogle Scholar
Zimmer, F., Lesch, H., & Birk, G.T. 1997, A&A, 320, 746.Google Scholar